Koopman, Bevan
ChatGPT Hallucinates when Attributing Answers
Zuccon, Guido, Koopman, Bevan, Shaik, Razia
Can ChatGPT provide evidence to support its answers? Does the evidence it suggests actually exist and does it really support its answer? We investigate these questions using a collection of domain-specific knowledge-based questions, specifically prompting ChatGPT to provide both an answer and supporting evidence in the form of references to external sources. We also investigate how different prompts impact answers and evidence. We find that ChatGPT provides correct or partially correct answers in about half of the cases (50.6% of the times), but its suggested references only exist 14% of the times. We further provide insights on the generated references that reveal common traits among the references that ChatGPT generates, and show how even if a reference provided by the model does exist, this reference often does not support the claims ChatGPT attributes to it. Our findings are important because (1) they are the first systematic analysis of the references created by ChatGPT in its answers; (2) they suggest that the model may leverage good quality information in producing correct answers, but is unable to attribute real evidence to support its answers. Prompts, raw result files and manual analysis are made publicly available.
Dr ChatGPT, tell me what I want to hear: How prompt knowledge impacts health answer correctness
Zuccon, Guido, Koopman, Bevan
Generative pre-trained language models (GPLMs) like ChatGPT encode in the model's parameters knowledge the models observe during the pre-training phase. This knowledge is then used at inference to address the task specified by the user in their prompt. For example, for the question-answering task, the GPLMs leverage the knowledge and linguistic patterns learned at training to produce an answer to a user question. Aside from the knowledge encoded in the model itself, answers produced by GPLMs can also leverage knowledge provided in the prompts. For example, a GPLM can be integrated into a retrieve-then-generate paradigm where a search engine is used to retrieve documents relevant to the question; the content of the documents is then transferred to the GPLM via the prompt. In this paper we study the differences in answer correctness generated by ChatGPT when leveraging the model's knowledge alone vs. in combination with the prompt knowledge. We study this in the context of consumers seeking health advice from the model. Aside from measuring the effectiveness of ChatGPT in this context, we show that the knowledge passed in the prompt can overturn the knowledge encoded in the model and this is, in our experiments, to the detriment of answer correctness. This work has important implications for the development of more robust and transparent question-answering systems based on generative pre-trained language models.
Can ChatGPT Write a Good Boolean Query for Systematic Review Literature Search?
Wang, Shuai, Scells, Harrisen, Koopman, Bevan, Zuccon, Guido
Systematic reviews are comprehensive reviews of the literature for a highly focused research question. These reviews are often treated as the highest form of evidence in evidence-based medicine, and are the key strategy to answer research questions in the medical field. To create a high-quality systematic review, complex Boolean queries are often constructed to retrieve studies for the review topic. However, it often takes a long time for systematic review researchers to construct a high quality systematic review Boolean query, and often the resulting queries are far from effective. Poor queries may lead to biased or invalid reviews, because they missed to retrieve key evidence, or to extensive increase in review costs, because they retrieved too many irrelevant studies. Recent advances in Transformer-based generative models have shown great potential to effectively follow instructions from users and generate answers based on the instructions being made. In this paper, we investigate the effectiveness of the latest of such models, ChatGPT, in generating effective Boolean queries for systematic review literature search. Through a number of extensive experiments on standard test collections for the task, we find that ChatGPT is capable of generating queries that lead to high search precision, although trading-off this for recall. Overall, our study demonstrates the potential of ChatGPT in generating effective Boolean queries for systematic review literature search. The ability of ChatGPT to follow complex instructions and generate queries with high precision makes it a valuable tool for researchers conducting systematic reviews, particularly for rapid reviews where time is a constraint and often trading-off higher precision for lower recall is acceptable.
Neural Rankers for Effective Screening Prioritisation in Medical Systematic Review Literature Search
Wang, Shuai, Scells, Harrisen, Koopman, Bevan, Zuccon, Guido
Medical systematic reviews typically require assessing all the documents retrieved by a search. The reason is two-fold: the task aims for ``total recall''; and documents retrieved using Boolean search are an unordered set, and thus it is unclear how an assessor could examine only a subset. Screening prioritisation is the process of ranking the (unordered) set of retrieved documents, allowing assessors to begin the downstream processes of the systematic review creation earlier, leading to earlier completion of the review, or even avoiding screening documents ranked least relevant. Screening prioritisation requires highly effective ranking methods. Pre-trained language models are state-of-the-art on many IR tasks but have yet to be applied to systematic review screening prioritisation. In this paper, we apply several pre-trained language models to the systematic review document ranking task, both directly and fine-tuned. An empirical analysis compares how effective neural methods compare to traditional methods for this task. We also investigate different types of document representations for neural methods and their impact on ranking performance. Our results show that BERT-based rankers outperform the current state-of-the-art screening prioritisation methods. However, BERT rankers and existing methods can actually be complementary, and thus, further improvements may be achieved if used in conjunction.