Konidaris, George
Model-based Reinforcement Learning for Parameterized Action Spaces
Zhang, Renhao, Fu, Haotian, Miao, Yilin, Konidaris, George
We propose a novel model-based reinforcement learning algorithm -- Dynamics Learning and predictive control with Parameterized Actions (DLPA) -- for Parameterized Action Markov Decision Processes (PAMDPs). The agent learns a parameterized-action-conditioned dynamics model and plans with a modified Model Predictive Path Integral control. We theoretically quantify the difference between the generated trajectory and the optimal trajectory during planning in terms of the value they achieved through the lens of Lipschitz Continuity. Our empirical results on several standard benchmarks show that our algorithm achieves superior sample efficiency and asymptotic performance than state-of-the-art PAMDP methods.
MinePlanner: A Benchmark for Long-Horizon Planning in Large Minecraft Worlds
Hill, William, Liu, Ireton, Koch, Anita De Mello, Harvey, Damion, Konidaris, George, James, Steven
We propose a new benchmark for planning tasks based on the Minecraft game. Our benchmark contains 45 tasks overall, but also provides support for creating both propositional and numeric instances of new Minecraft tasks automatically. We benchmark numeric and propositional planning systems on these tasks, with results demonstrating that state-of-the-art planners are currently incapable of dealing with many of the challenges advanced by our new benchmark, such as scaling to instances with thousands of objects. Based on these results, we identify areas of improvement for future planners. Our framework is made available at https://github.com/IretonLiu/
Hierarchical Empowerment: Towards Tractable Empowerment-Based Skill Learning
Levy, Andrew, Rammohan, Sreehari, Allievi, Alessandro, Niekum, Scott, Konidaris, George
General purpose agents will require large repertoires of skills. Empowerment -- the maximum mutual information between skills and states -- provides a pathway for learning large collections of distinct skills, but mutual information is difficult to optimize. We introduce a new framework, Hierarchical Empowerment, that makes computing empowerment more tractable by integrating concepts from Goal-Conditioned Hierarchical Reinforcement Learning. Our framework makes two specific contributions. First, we introduce a new variational lower bound on mutual information that can be used to compute empowerment over short horizons. Second, we introduce a hierarchical architecture for computing empowerment over exponentially longer time scales. We verify the contributions of the framework in a series of simulated robotics tasks. In a popular ant navigation domain, our four level agents are able to learn skills that cover a surface area over two orders of magnitude larger than prior work.
Improved Inference of Human Intent by Combining Plan Recognition and Language Feedback
Idrees, Ifrah, Yun, Tian, Sharma, Naveen, Deng, Yunxin, Gopalan, Nakul, Konidaris, George, Tellex, Stefanie
Conversational assistive robots can aid people, especially those with cognitive impairments, to accomplish various tasks such as cooking meals, performing exercises, or operating machines. However, to interact with people effectively, robots must recognize human plans and goals from noisy observations of human actions, even when the user acts sub-optimally. Previous works on Plan and Goal Recognition (PGR) as planning have used hierarchical task networks (HTN) to model the actor/human. However, these techniques are insufficient as they do not have user engagement via natural modes of interaction such as language. Moreover, they have no mechanisms to let users, especially those with cognitive impairments, know of a deviation from their original plan or about any sub-optimal actions taken towards their goal. We propose a novel framework for plan and goal recognition in partially observable domains -- Dialogue for Goal Recognition (D4GR) enabling a robot to rectify its belief in human progress by asking clarification questions about noisy sensor data and sub-optimal human actions. We evaluate the performance of D4GR over two simulated domains -- kitchen and blocks domain. With language feedback and the world state information in a hierarchical task model, we show that D4GR framework for the highest sensor noise performs 1% better than HTN in goal accuracy in both domains. For plan accuracy, D4GR outperforms by 4% in the kitchen domain and 2% in the blocks domain in comparison to HTN. The ALWAYS-ASK oracle outperforms our policy by 3% in goal recognition and 7%in plan recognition. D4GR does so by asking 68% fewer questions than an oracle baseline. We also demonstrate a real-world robot scenario in the kitchen domain, validating the improved plan and goal recognition of D4GR in a realistic setting.
Meta-Learning Parameterized Skills
Fu, Haotian, Yu, Shangqun, Tiwari, Saket, Littman, Michael, Konidaris, George
We propose a novel parameterized skill-learning algorithm that aims to learn transferable parameterized skills and synthesize them into a new action space that supports efficient learning in long-horizon tasks. We propose to leverage off-policy Meta-RL combined with a trajectory-centric smoothness term to learn a set of parameterized skills. Our agent can use these learned skills to construct a three-level hierarchical framework that models a Temporally-extended Parameterized Action Markov Decision Process. We empirically demonstrate that the proposed algorithms enable an agent to solve a set of difficult long-horizon (obstacle-course and robot manipulation) tasks.
Flipping Coins to Estimate Pseudocounts for Exploration in Reinforcement Learning
Lobel, Sam, Bagaria, Akhil, Konidaris, George
We propose a new method for count-based exploration in high-dimensional state spaces. Unlike previous work which relies on density models, we show that counts can be derived by averaging samples from the Rademacher distribution (or coin flips). This insight is used to set up a simple supervised learning objective which, when optimized, yields a state's visitation count. We show that our method is significantly more effective at deducing ground-truth visitation counts than previous work; when used as an exploration bonus for a model-free reinforcement learning algorithm, it outperforms existing approaches on most of 9 challenging exploration tasks, including the Atari game Montezuma's Revenge.
RLang: A Declarative Language for Describing Partial World Knowledge to Reinforcement Learning Agents
Rodriguez-Sanchez, Rafael, Spiegel, Benjamin A., Wang, Jennifer, Patel, Roma, Tellex, Stefanie, Konidaris, George
We introduce RLang, a domain-specific language (DSL) for communicating domain knowledge to an RL agent. Unlike existing RL DSLs that ground to \textit{single} elements of a decision-making formalism (e.g., the reward function or policy), RLang can specify information about every element of a Markov decision process. We define precise syntax and grounding semantics for RLang, and provide a parser that grounds RLang programs to an algorithm-agnostic \textit{partial} world model and policy that can be exploited by an RL agent. We provide a series of example RLang programs demonstrating how different RL methods can exploit the resulting knowledge, encompassing model-free and model-based tabular algorithms, policy gradient and value-based methods, hierarchical approaches, and deep methods.
Exploiting Contextual Structure to Generate Useful Auxiliary Tasks
Quartey, Benedict, Shah, Ankit, Konidaris, George
Reinforcement learning requires interaction with an environment, which is expensive for robots. This constraint necessitates approaches that work with limited environmental interaction by maximizing the reuse of previous experiences. We propose an approach that maximizes experience reuse while learning to solve a given task by generating and simultaneously learning useful auxiliary tasks. To generate these tasks, we construct an abstract temporal logic representation of the given task and leverage large language models to generate context-aware object embeddings that facilitate object replacements. Counterfactual reasoning and off-policy methods allow us to simultaneously learn these auxiliary tasks while solving the given target task. We combine these insights into a novel framework for multitask reinforcement learning and experimentally show that our generated auxiliary tasks share similar underlying exploration requirements as the given task, thereby maximizing the utility of directed exploration. Our approach allows agents to automatically learn additional useful policies without extra environment interaction.
Skill Transfer for Temporally-Extended Task Specifications
Liu, Jason Xinyu, Shah, Ankit, Rosen, Eric, Konidaris, George, Tellex, Stefanie
Deploying robots in real-world domains, such as households and flexible manufacturing lines, requires the robots to be taskable on demand. Linear temporal logic (LTL) is a widely-used specification language with a compositional grammar that naturally induces commonalities across tasks. However, the majority of prior research on reinforcement learning with LTL specifications treats every new formula independently. We propose LTL-Transfer, a novel algorithm that enables subpolicy reuse across tasks by segmenting policies for training tasks into portable transition-centric skills capable of satisfying a wide array of unseen LTL specifications while respecting safety-critical constraints. Experiments in a Minecraft-inspired domain show that LTL-Transfer can satisfy over 90% of 500 unseen tasks after training on only 50 task specifications and never violating a safety constraint. We also deployed LTL-Transfer on a quadruped mobile manipulator in an analog household environment to demonstrate its ability to transfer to many fetch and delivery tasks in a zero-shot fashion.
A Domain-Agnostic Approach for Characterization of Lifelong Learning Systems
Baker, Megan M., New, Alexander, Aguilar-Simon, Mario, Al-Halah, Ziad, Arnold, Sébastien M. R., Ben-Iwhiwhu, Ese, Brna, Andrew P., Brooks, Ethan, Brown, Ryan C., Daniels, Zachary, Daram, Anurag, Delattre, Fabien, Dellana, Ryan, Eaton, Eric, Fu, Haotian, Grauman, Kristen, Hostetler, Jesse, Iqbal, Shariq, Kent, Cassandra, Ketz, Nicholas, Kolouri, Soheil, Konidaris, George, Kudithipudi, Dhireesha, Learned-Miller, Erik, Lee, Seungwon, Littman, Michael L., Madireddy, Sandeep, Mendez, Jorge A., Nguyen, Eric Q., Piatko, Christine D., Pilly, Praveen K., Raghavan, Aswin, Rahman, Abrar, Ramakrishnan, Santhosh Kumar, Ratzlaff, Neale, Soltoggio, Andrea, Stone, Peter, Sur, Indranil, Tang, Zhipeng, Tiwari, Saket, Vedder, Kyle, Wang, Felix, Xu, Zifan, Yanguas-Gil, Angel, Yedidsion, Harel, Yu, Shangqun, Vallabha, Gautam K.
Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to "real world" events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and systems will instead need to adapt to novel distributions and tasks while deployed. This critical gap may be addressed through the development of "Lifelong Learning" systems that are capable of 1) Continuous Learning, 2) Transfer and Adaptation, and 3) Scalability. Unfortunately, efforts to improve these capabilities are typically treated as distinct areas of research that are assessed independently, without regard to the impact of each separate capability on other aspects of the system. We instead propose a holistic approach, using a suite of metrics and an evaluation framework to assess Lifelong Learning in a principled way that is agnostic to specific domains or system techniques. Through five case studies, we show that this suite of metrics can inform the development of varied and complex Lifelong Learning systems. We highlight how the proposed suite of metrics quantifies performance trade-offs present during Lifelong Learning system development - both the widely discussed Stability-Plasticity dilemma and the newly proposed relationship between Sample Efficient and Robust Learning. Further, we make recommendations for the formulation and use of metrics to guide the continuing development of Lifelong Learning systems and assess their progress in the future.