Not enough data to create a plot.
Try a different view from the menu above.
King, Irwin
Adaptive Regularization for Transductive Support Vector Machine
Xu, Zenglin, Jin, Rong, Zhu, Jianke, King, Irwin, Lyu, Michael, Yang, Zhirong
We discuss the framework of Transductive Support Vector Machine (TSVM) from the perspective of the regularization strength induced by the unlabeled data. In this framework, SVM and TSVM can be regarded as a learning machine without regularization and one with full regularization from the unlabeled data, respectively. Therefore, to supplement this framework of the regularization strength, it is necessary to introduce data-dependant partial regularization. To this end, we reformulate TSVM into a form with controllable regularization strength, which includes SVM and TSVM as special cases. Furthermore, we introduce a method of adaptive regularization that is data dependant and is based on the smoothness assumption. Experiments on a set of benchmark data sets indicate the promising results of the proposed work compared with state-of-the-art TSVM algorithms.
An Extended Level Method for Efficient Multiple Kernel Learning
Xu, Zenglin, Jin, Rong, King, Irwin, Lyu, Michael
We consider the problem of multiple kernel learning (MKL), which can be formulated as a convex-concave problem. In the past, two efficient methods, i.e., Semi-Infinite Linear Programming (SILP) and Subgradient Descent (SD), have been proposed for large-scale multiple kernel learning. Despite their success, both methods have their own shortcomings: (a) the SD method utilizes the gradient of only the current solution, and (b) the SILP method does not regularize the approximate solution obtained from the cutting plane model. In this work, we extend the level method, which was originally designed for optimizing non-smooth objective functions, to convex-concave optimization, and apply it to multiple kernel learning. The extended level method overcomes the drawbacks of SILP and SD by exploiting all the gradients computed in past iterations and by regularizing the solution via a projection to a level set. Empirical study with eight UCI datasets shows that the extended level method can significantly improve efficiency by saving on average 91.9% of computational time over the SILP method and 70.3% over the SD method.
Learning with Consistency between Inductive Functions and Kernels
Yang, Haixuan, King, Irwin, Lyu, Michael
Regularized Least Squares (RLS) algorithms have the ability to avoid over-fitting problems and to express solutions as kernel expansions. However, we observe that the current RLS algorithms cannot provide a satisfactory interpretation even on a constant function. On the other hand, while kernel-based algorithms have been developed in such a tendency that almost all learning algorithms are kernelized or being kernelized, a basic fact is often ignored: The learned function from the data and the kernel fits the data well, but may not be consistent with the kernel. Based on these considerations and on the intuition that a good kernel-based inductive function should be consistent with both the data and the kernel, a novel learning scheme is proposed. The advantages of this scheme lie in its corresponding Representer Theorem, its strong interpretation ability about what kind of functions should not be penalized, and its promising accuracy improvements shown in a number of experiments. Furthermore, we provide a detailed technical description about heat kernels, which serves as an example for the readers to apply similar techniques for other kernels. Our work provides a preliminary step in a new direction to explore the varying consistency between inductive functions and kernels under various distributions.
Heavy-Tailed Symmetric Stochastic Neighbor Embedding
Yang, Zhirong, King, Irwin, Xu, Zenglin, Oja, Erkki
Stochastic Neighbor Embedding (SNE) has shown to be quite promising for data visualization. Currently, the most popular implementation, t-SNE, is restricted to a particular Student t-distribution as its embedding distribution. Moreover, it uses a gradient descent algorithm that may require users to tune parameters such as the learning step size, momentum, etc., in finding its optimum. In this paper, we propose the Heavy-tailed Symmetric Stochastic Neighbor Embedding (HSSNE) method, which is a generalization of the t-SNE to accommodate various heavy-tailed embedding similarity functions. With this generalization, we are presented with two difficulties. The first is how to select the best embedding similarity among all heavy-tailed functions and the second is how to optimize the objective function once the heave-tailed function has been selected. Our contributions then are: (1) we point out that various heavy-tailed embedding similarities can be characterized by their negative score functions. Based on this finding, we present a parameterized subset of similarity functions for choosing the best tail-heaviness for HSSNE; (2) we present a fixed-point optimization algorithm that can be applied to all heavy-tailed functions and does not require the user to set any parameters; and (3) we present two empirical studies, one for unsupervised visualization showing that our optimization algorithm runs as fast and as good as the best known t-SNE implementation and the other for semi-supervised visualization showing quantitative superiority using the homogeneity measure as well as qualitative advantage in cluster separation over t-SNE.
Efficient Convex Relaxation for Transductive Support Vector Machine
Xu, Zenglin, Jin, Rong, Zhu, Jianke, King, Irwin, Lyu, Michael
We consider the problem of Support Vector Machine transduction, which involves a combinatorial problem with exponential computational complexity in the number of unlabeled examples. Although several studies are devoted to Transductive SVM, they suffer either from the high computation complexity or from the solutions of local optimum. To address this problem, we propose solving Transductive SVM via a convex relaxation, which converts the NP-hard problem to a semi-definite programming. Compared with the other SDP relaxation for Transductive SVM, the proposed algorithm is computationally more efficient with the number of free parameters reduced from O(n2) to O(n) where n is the number of examples. Empirical study with several benchmark data sets shows the promising performance of the proposed algorithm in comparison with other state-of-the-art implementations of Transductive SVM.