Goto

Collaborating Authors

 Kilbertus, Niki


Whole Genome Transformer for Gene Interaction Effects in Microbiome Habitat Specificity

arXiv.org Artificial Intelligence

Leveraging the vast genetic diversity within microbiomes offers unparalleled insights into complex phenotypes, yet the task of accurately predicting and understanding such traits from genomic data remains challenging. We propose a framework taking advantage of existing large models for gene vectorization to predict habitat specificity from entire microbial genome sequences. Based on our model, we develop attribution techniques to elucidate gene interaction effects that drive microbial adaptation to diverse environments. We train and validate our approach on a large dataset of high quality microbiome genomes from different habitats. We not only demonstrate solid predictive performance, but also how sequence-level information of entire genomes allows us to identify gene associations underlying complex phenotypes. Our attribution recovers known important interaction networks and proposes new candidates for experimental follow up.


Signature Kernel Conditional Independence Tests in Causal Discovery for Stochastic Processes

arXiv.org Machine Learning

Inferring the causal structure underlying stochastic dynamical systems from observational data holds great promise in domains ranging from science and health to finance. Such processes can often be accurately modeled via stochastic differential equations (SDEs), which naturally imply causal relationships via "which variables enter the differential of which other variables". In this paper, we develop a kernel-based test of conditional independence (CI) on "path-space" -- solutions to SDEs -- by leveraging recent advances in signature kernels. We demonstrate strictly superior performance of our proposed CI test compared to existing approaches on path-space. Then, we develop constraint-based causal discovery algorithms for acyclic stochastic dynamical systems (allowing for loops) that leverage temporal information to recover the entire directed graph. Assuming faithfulness and a CI oracle, our algorithm is sound and complete. We empirically verify that our developed CI test in conjunction with the causal discovery algorithm reliably outperforms baselines across a range of settings.


Unbalancedness in Neural Monge Maps Improves Unpaired Domain Translation

arXiv.org Artificial Intelligence

In optimal transport (OT), a Monge map is known as a mapping that transports a source distribution to a target distribution in the most cost-efficient way. Recently, multiple neural estimators for Monge maps have been developed and applied in diverse unpaired domain translation tasks, e.g. in single-cell biology and computer vision. However, the classic OT framework enforces mass conservation, which makes it prone to outliers and limits its applicability in real-world scenarios. The latter can be particularly harmful in OT domain translation tasks, where the relative position of a sample within a distribution is explicitly taken into account. While unbalanced OT tackles this challenge in the discrete setting, its integration into neural Monge map estimators has received limited attention. We propose a theoretically grounded method to incorporate unbalancedness into any Monge map estimator. We improve existing estimators to model cell trajectories over time and to predict cellular responses to perturbations. Moreover, our approach seamlessly integrates with the OT flow matching (OT-FM) framework. While we show that OT-FM performs competitively in image translation, we further improve performance by incorporating unbalancedness (UOT-FM), which better preserves relevant features. We hence establish UOT-FM as a principled method for unpaired image translation.


Stabilized Neural Differential Equations for Learning Dynamics with Explicit Constraints

arXiv.org Machine Learning

Many successful methods to learn dynamical systems from data have recently been introduced. However, ensuring that the inferred dynamics preserve known constraints, such as conservation laws or restrictions on the allowed system states, remains challenging. We propose stabilized neural differential equations (SNDEs), a method to enforce arbitrary manifold constraints for neural differential equations. Our approach is based on a stabilization term that, when added to the original dynamics, renders the constraint manifold provably asymptotically stable. Due to its simplicity, our method is compatible with all common neural differential equation (NDE) models and broadly applicable. In extensive empirical evaluations, we demonstrate that SNDEs outperform existing methods while broadening the types of constraints that can be incorporated into NDE training.


Learning Counterfactually Invariant Predictors

arXiv.org Machine Learning

Invariance, or equivariance to certain data transformations, has proven essential in numerous applications of machine learning (ML), since it can lead to better generalization capabilities [Arjovsky et al., 2019, Bloem-Reddy and Teh, 2020, Chen et al., 2020]. For instance, in image recognition, predictions ought to remain unchanged under scaling, translation, or rotation of the input image. Data augmentation, an early heuristic to promote such invariances, has become indispensable for successfully training deep neural networks (DNNs) [Shorten and Khoshgoftaar, 2019, Xie et al., 2020]. Well-known examples of "invariance by design" include convolutional neural networks (CNNs) for translation invariance [Krizhevsky et al., 2012], group equivariant NNs for general group transformations [Cohen and Welling, 2016], recurrent neural networks (RNNs) and transformers for sequential data [Vaswani et al., 2017], DeepSet [Zaheer et al., 2017] for sets, and graph neural networks (GNNs) for different types of geometric structures [Battaglia et al., 2018]. Many applications in modern ML, however, call for arguably stronger notions of invariance based on causality. This case has been made for image classification, algorithmic fairness [Hardt et al., 2016, Mitchell et al., 2021], robustness [Bรผhlmann, 2020], and out-of-distribution generalization [Lu et al., 2021]. The goal is invariance with respect to hypothetical manipulations of the data generating process (DGP). Various works develop methods that assume observational distributions (across environments or between training and test) to be governed by shared causal mechanisms, but differ due to various types of distribution shifts encoded by the causal model [Arjovsky et al., 2019, Bรผhlmann, 2020, Heinze-Deml et al., 2018, Makar et al., 2022, Part of this work was done while Francesco Quinzan visited the Max Planck Institute for Intelligent Systems, Tรผbingen, Germany.


ODEFormer: Symbolic Regression of Dynamical Systems with Transformers

arXiv.org Artificial Intelligence

Recent triumphs of machine learning (ML) spark growing enthusiasm for accelerating scientific discovery [1-3]. In particular, inferring dynamical laws governing observational data is an extremely challenging task that is anticipated to benefit substantially from modern ML methods. Modeling dynamical systems for forecasting, control, and system identification has been studied by various communities within ML. Successful modern approaches are primarily based on advances in deep learning, such as neural ordinary differential equation (NODE) (see Chen et al. [4] and many extensions thereof). However, these models typically lack interpretability due to their black-box nature, which has inspired extensive research on explainable ML of overparameterized models [5, 6].


Predicting Ordinary Differential Equations with Transformers

arXiv.org Artificial Intelligence

We develop a transformer-based sequence-to-sequence model that recovers scalar ordinary differential equations (ODEs) in symbolic form from irregularly sampled and noisy observations of a single solution trajectory. We demonstrate in extensive empirical evaluations that our model performs better or on par with existing methods in terms of accurate recovery across various settings. Moreover, our method is efficiently scalable: after one-time pretraining on a large set of ODEs, we can infer the governing law of a new observed solution in a few forward passes of the model.


Modeling Content Creator Incentives on Algorithm-Curated Platforms

arXiv.org Artificial Intelligence

Content creators compete for user attention. Their reach crucially depends on algorithmic choices made by developers on online platforms. To maximize exposure, many creators adapt strategically, as evidenced by examples like the sprawling search engine optimization industry. This begets competition for the finite user attention pool. We formalize these dynamics in what we call an exposure game, a model of incentives induced by algorithms, including modern factorization and (deep) two-tower architectures. We prove that seemingly innocuous algorithmic choices, e.g., non-negative vs. unconstrained factorization, significantly affect the existence and character of (Nash) equilibria in exposure games. We proffer use of creator behavior models, like exposure games, for an (ex-ante) pre-deployment audit. Such an audit can identify misalignment between desirable and incentivized content, and thus complement post-hoc measures like content filtering and moderation. To this end, we propose tools for numerically finding equilibria in exposure games, and illustrate results of an audit on the MovieLens and LastFM datasets. Among else, we find that the strategically produced content exhibits strong dependence between algorithmic exploration and content diversity, and between model expressivity and bias towards gender-based user and creator groups.


Sequential Underspecified Instrument Selection for Cause-Effect Estimation

arXiv.org Artificial Intelligence

Instrumental variable (IV) methods are used to estimate causal effects in settings with unobserved confounding, where we cannot directly experiment on the treatment variable. Instruments are variables which only affect the outcome indirectly via the treatment variable(s). Most IV applications focus on low-dimensional treatments and crucially require at least as many instruments as treatments. This assumption is restrictive: in the natural sciences we often seek to infer causal effects of high-dimensional treatments (e.g., the effect of gene expressions or microbiota on health and disease), but can only run few experiments with a limited number of instruments (e.g., drugs or antibiotics). In such underspecified problems, the full treatment effect is not identifiable in a single experiment even in the linear case. We show that one can still reliably recover the projection of the treatment effect onto the instrumented subspace and develop techniques to consistently combine such partial estimates from different sets of instruments. We then leverage our combined estimators in an algorithm that iteratively proposes the most informative instruments at each round of experimentation to maximize the overall information about the full causal effect.


Stochastic Causal Programming for Bounding Treatment Effects

arXiv.org Artificial Intelligence

Causal effect estimation is important for many tasks in the natural and social sciences. We design algorithms for the continuous partial identification problem: bounding the effects of multivariate, continuous treatments when unmeasured confounding makes identification impossible. Specifically, we cast causal effects as objective functions within a constrained optimization problem, and minimize/maximize these functions to obtain bounds. We combine flexible learning algorithms with Monte Carlo methods to implement a family of solutions under the name of stochastic causal programming. In particular, we show how the generic framework can be efficiently formulated in settings where auxiliary variables are clustered into pre-treatment and post-treatment sets, where no fine-grained causal graph can be easily specified. In these settings, we can avoid the need for fully specifying the distribution family of hidden common causes. Monte Carlo computation is also much simplified, leading to algorithms which are more computationally stable against alternatives.