Khashabi, Daniel
WorldAPIs: The World Is Worth How Many APIs? A Thought Experiment
Ou, Jiefu, Uzunoglu, Arda, Van Durme, Benjamin, Khashabi, Daniel
AI systems make decisions in physical environments through primitive actions or affordances that are accessed via API calls. While deploying AI agents in the real world involves numerous high-level actions, existing embodied simulators offer a limited set of domain-salient APIs. This naturally brings up the questions: how many primitive actions (APIs) are needed for a versatile embodied agent, and what should they look like? We explore this via a thought experiment: assuming that wikiHow tutorials cover a wide variety of human-written tasks, what is the space of APIs needed to cover these instructions? We propose a framework to iteratively induce new APIs by grounding wikiHow instruction to situated agent policies. Inspired by recent successes in large language models (LLMs) for embodied planning, we propose a few-shot prompting to steer GPT-4 to generate Pythonic programs as agent policies and bootstrap a universe of APIs by 1) reusing a seed set of APIs; and then 2) fabricate new API calls when necessary. The focus of this thought experiment is on defining these APIs rather than their executability. We apply the proposed pipeline on instructions from wikiHow tutorials. On a small fraction (0.5%) of tutorials, we induce an action space of 300+ APIs necessary for capturing the rich variety of tasks in the physical world. A detailed automatic and human analysis of the induction output reveals that the proposed pipeline enables effective reuse and creation of APIs. Moreover, a manual review revealed that existing simulators support only a small subset of the induced APIs (9 of the top 50 frequent APIs), motivating the development of action-rich embodied environments.
Core: Robust Factual Precision Scoring with Informative Sub-Claim Identification
Jiang, Zhengping, Zhang, Jingyu, Weir, Nathaniel, Ebner, Seth, Wanner, Miriam, Sanders, Kate, Khashabi, Daniel, Liu, Anqi, Van Durme, Benjamin
Hallucinations -- the generation of untrue claims -- pose a challenge to the application of large language models (LLMs) [1] thereby motivating the development of metrics to evaluate factual precision. We observe that popular metrics using the Decompose-Then-Verify framework, such as FActScore [2], can be manipulated by adding obvious or repetitive claims to artificially inflate scores. We expand the FActScore dataset to design and analyze factual precision metrics, demonstrating that models can be trained to achieve high scores under existing metrics through exploiting the issues we identify. This motivates our new customizable plug-and-play subclaim selection component called Core, which filters down individual subclaims according to their uniqueness and informativeness. Metrics augmented by Core are substantially more robust as shown in head-to-head comparisons. We release an evaluation framework supporting the modular use of Core (https://github.com/zipJiang/Core) and various decomposition strategies, and we suggest its adoption by the LLM community. [1] Hong et al., "The Hallucinations Leaderboard -- An Open Effort to Measure Hallucinations in Large Language Models", arXiv:2404.05904v2 [cs.CL]. [2] Min et al., "FActScore: Fine-grained Atomic Evaluation of Factual Precision in Long Form Text Generation", arXiv:2305.14251v2 [cs.CL].
Insights into LLM Long-Context Failures: When Transformers Know but Don't Tell
Lu, Taiming, Gao, Muhan, Yu, Kuai, Byerly, Adam, Khashabi, Daniel
Large Language Models (LLMs) exhibit positional bias, struggling to utilize information from the middle or end of long contexts. Our study explores LLMs' long-context reasoning by probing their hidden representations. We find that while LLMs encode the position of target information, they often fail to leverage this in generating accurate responses. This reveals a disconnect between information retrieval and utilization, a "know but don't tell" phenomenon. We further analyze the relationship between extraction time and final accuracy, offering insights into the underlying mechanics of transformer models.
RORA: Robust Free-Text Rationale Evaluation
Jiang, Zhengping, Lu, Yining, Chen, Hanjie, Khashabi, Daniel, Van Durme, Benjamin, Liu, Anqi
Free-text rationales play a pivotal role in explainable NLP, bridging the knowledge and reasoning gaps behind a model's decision-making. However, due to the diversity of potential reasoning paths and a corresponding lack of definitive ground truth, their evaluation remains a challenge. Existing evaluation metrics rely on the degree to which a rationale supports a target label, but we find these fall short in evaluating rationales that inadvertently leak the labels. To address this problem, we propose RORA, a Robust free-text Rationale evaluation against label leakage. RORA quantifies the new information supplied by a rationale to justify the label. This is achieved by assessing the conditional V-information \citep{hewitt-etal-2021-conditional} with a predictive family robust against leaky features that can be exploited by a small model. RORA consistently outperforms existing approaches in evaluating human-written, synthetic, or model-generated rationales, particularly demonstrating robustness against label leakage. We also show that RORA aligns well with human judgment, providing a more reliable and accurate measurement across diverse free-text rationales.
k-SemStamp: A Clustering-Based Semantic Watermark for Detection of Machine-Generated Text
Hou, Abe Bohan, Zhang, Jingyu, Wang, Yichen, Khashabi, Daniel, He, Tianxing
Recent watermarked generation algorithms inject detectable signatures during language generation to facilitate post-hoc detection. While token-level watermarks are vulnerable to paraphrase attacks, SemStamp (Hou et al., 2023) applies watermark on the semantic representation of sentences and demonstrates promising robustness. SemStamp employs locality-sensitive hashing (LSH) to partition the semantic space with arbitrary hyperplanes, which results in a suboptimal tradeoff between robustness and speed. We propose k-SemStamp, a simple yet effective enhancement of SemStamp, utilizing k-means clustering as an alternative of LSH to partition the embedding space with awareness of inherent semantic structure. Experimental results indicate that k-SemStamp saliently improves its robustness and sampling efficiency while preserving the generation quality, advancing a more effective tool for machine-generated text detection.
DiffNorm: Self-Supervised Normalization for Non-autoregressive Speech-to-speech Translation
Tan, Weiting, Zhang, Jingyu, Shen, Lingfeng, Khashabi, Daniel, Koehn, Philipp
Non-autoregressive Transformers (NATs) are recently applied in direct speech-to-speech translation systems, which convert speech across different languages without intermediate text data. Although NATs generate high-quality outputs and offer faster inference than autoregressive models, they tend to produce incoherent and repetitive results due to complex data distribution (e.g., acoustic and linguistic variations in speech). In this work, we introduce DiffNorm, a diffusion-based normalization strategy that simplifies data distributions for training NAT models. After training with a self-supervised noise estimation objective, DiffNorm constructs normalized target data by denoising synthetically corrupted speech features. Additionally, we propose to regularize NATs with classifier-free guidance, improving model robustness and translation quality by randomly dropping out source information during training. Our strategies result in a notable improvement of about +7 ASR-BLEU for English-Spanish (En-Es) and +2 ASR-BLEU for English-French (En-Fr) translations on the CVSS benchmark, while attaining over 14x speedup for En-Es and 5x speedup for En-Fr translations compared to autoregressive baselines.
SELF-[IN]CORRECT: LLMs Struggle with Refining Self-Generated Responses
Jiang, Dongwei, Zhang, Jingyu, Weller, Orion, Weir, Nathaniel, Van Durme, Benjamin, Khashabi, Daniel
Can LLMs continually improve their previous outputs for better results? An affirmative answer would require LLMs to be better at discriminating among previously-generated alternatives, than generating initial responses. We explore the validity of this hypothesis in practice. We first introduce a unified framework that allows us to compare the generative and discriminative capability of any model on any task. Then, in our resulting experimental analysis of several LLMs, we do not observe the performance of those models on discrimination to be reliably better than generation. We hope these findings inform the growing literature on self-improvement AI systems.
Verifiable by Design: Aligning Language Models to Quote from Pre-Training Data
Zhang, Jingyu, Marone, Marc, Li, Tianjian, Van Durme, Benjamin, Khashabi, Daniel
For humans to trust the fluent generations of large language models (LLMs), they must be able to verify their correctness against trusted, external sources. Recent efforts aim to increase verifiability through citations of retrieved documents or post-hoc provenance. However, such citations are prone to mistakes that further complicate their verifiability. To address these limitations, we tackle the verifiability goal with a different philosophy: we trivialize the verification process by developing models that quote verbatim statements from trusted sources in pre-training data. We propose Quote-Tuning, which demonstrates the feasibility of aligning LLMs to leverage memorized information and quote from pre-training data. Quote-Tuning quantifies quoting against large corpora with efficient membership inference tools, and uses the amount of quotes as an implicit reward signal to construct a synthetic preference dataset for quoting, without any human annotation. Next, the target model is aligned to quote using preference optimization algorithms. Experimental results show that Quote-Tuning significantly increases the percentage of LLM generation quoted verbatim from high-quality pre-training documents by 55% to 130% relative to untuned models while maintaining response quality. Further experiments demonstrate that Quote-Tuning generalizes quoting to out-of-domain data, is applicable in different tasks, and provides additional benefits to truthfulness. Quote-Tuning not only serves as a hassle-free method to increase quoting but also opens up avenues for improving LLM trustworthiness through better verifiability.
Tur[k]ingBench: A Challenge Benchmark for Web Agents
Xu, Kevin, Kordi, Yeganeh, Sanders, Kate, Wang, Yizhong, Byerly, Adam, Zhang, Jack, Van Durme, Benjamin, Khashabi, Daniel
Recent chatbots have demonstrated impressive ability to understand and communicate in raw-text form. However, there is more to the world than raw text. For example, humans spend long hours of their time on web pages, where text is intertwined with other modalities and tasks are accomplished in the form of various complex interactions. Can state-of-the-art multi-modal models generalize to such complex domains? To address this question, we introduce TurkingBench, a benchmark of tasks formulated as web pages containing textual instructions with multi-modal context. Unlike existing work which employs artificially synthesized web pages, here we use natural HTML pages that were originally designed for crowdsourcing workers for various annotation purposes. The HTML instructions of each task are also instantiated with various values (obtained from the crowdsourcing tasks) to form new instances of the task. This benchmark contains 32.2K instances distributed across 158 tasks. Additionally, to facilitate the evaluation on TurkingBench, we develop an evaluation framework that connects the responses of chatbots to modifications on web pages (modifying a text box, checking a radio, etc.). We evaluate the performance of state-of-the-art models, including language-only, vision-only, and layout-only models, and their combinations, on this benchmark. Our findings reveal that these models perform significantly better than random chance, yet considerable room exists for improvement. We hope this benchmark will help facilitate the evaluation and development of web-based agents.
Dated Data: Tracing Knowledge Cutoffs in Large Language Models
Cheng, Jeffrey, Marone, Marc, Weller, Orion, Lawrie, Dawn, Khashabi, Daniel, Van Durme, Benjamin
Released Large Language Models (LLMs) are often paired with a claimed knowledge cutoff date, or the dates at which training data was gathered. Such information is crucial for applications where the LLM must provide up to date information. However, this statement only scratches the surface: do all resources in the training data share the same knowledge cutoff date? Does the model's demonstrated knowledge for these subsets closely align to their cutoff dates? In this work, we define the notion of an effective cutoff. This is distinct from the LLM designer reported cutoff and applies separately to sub-resources and topics. We propose a simple approach to estimate effective cutoffs on the resource-level temporal alignment of an LLM by probing across versions of the data. Using this analysis, we find that effective cutoffs often differ from reported cutoffs. To understand the root cause of this observation, we conduct a direct large-scale analysis on open pre-training datasets. Our analysis reveals two reasons for these inconsistencies: (1) temporal biases of CommonCrawl data due to non-trivial amounts of old data in new dumps and (2) complications in LLM deduplication schemes involving semantic duplicates and lexical near-duplicates. Overall, our results show that knowledge cutoffs are not as simple as they have seemed and that care must be taken both by LLM dataset curators as well as practitioners who seek to use information from these models.