Well File:
- Well Planning ( results)
- Shallow Hazard Analysis ( results)
- Well Plat ( results)
- Wellbore Schematic ( results)
- Directional Survey ( results)
- Fluid Sample ( results)
- Log ( results)
- Density ( results)
- Gamma Ray ( results)
- Mud ( results)
- Resistivity ( results)
- Report ( results)
- Daily Report ( results)
- End of Well Report ( results)
- Well Completion Report ( results)
- Rock Sample ( results)
Kevin Swersky
Prototypical Networks for Few-shot Learning
Jake Snell, Kevin Swersky, Richard Zemel
Graph Normalizing Flows
Jenny Liu, Aviral Kumar, Jimmy Ba, Jamie Kiros, Kevin Swersky
Graph Normalizing Flows
Jenny Liu, Aviral Kumar, Jimmy Ba, Jamie Kiros, Kevin Swersky
We introduce graph normalizing flows: a new, reversible graph neural network model for prediction and generation. On supervised tasks, graph normalizing flows perform similarly to message passing neural networks, but at a significantly reduced memory footprint, allowing them to scale to larger graphs. In the unsupervised case, we combine graph normalizing flows with a novel graph auto-encoder to create a generative model of graph structures. Our model is permutation-invariant, generating entire graphs with a single feed-forward pass, and achieves competitive results with the state-of-the art auto-regressive models, while being better suited to parallel computing architectures.
Prototypical Networks for Few-shot Learning
Jake Snell, Kevin Swersky, Richard Zemel
We propose Prototypical Networks for the problem of few-shot classification, where a classifier must generalize to new classes not seen in the training set, given only a small number of examples of each new class. Prototypical Networks learn a metric space in which classification can be performed by computing distances to prototype representations of each class. Compared to recent approaches for few-shot learning, they reflect a simpler inductive bias that is beneficial in this limited-data regime, and achieve excellent results. We provide an analysis showing that some simple design decisions can yield substantial improvements over recent approaches involving complicated architectural choices and meta-learning. We further extend Prototypical Networks to zero-shot learning and achieve state-ofthe-art results on the CU-Birds dataset.