Goto

Collaborating Authors

 Kembhavi, Aniruddha


Webly Supervised Concept Expansion for General Purpose Vision Models

arXiv.org Artificial Intelligence

General Purpose Vision (GPV) systems are models that are designed to solve a wide array of visual tasks without requiring architectural changes. Today, GPVs primarily learn both skills and concepts from large fully supervised datasets. Scaling GPVs to tens of thousands of concepts by acquiring data to learn each concept for every skill quickly becomes prohibitive. This work presents an effective and inexpensive alternative: learn skills from supervised datasets, learn concepts from web image search, and leverage a key characteristic of GPVs: the ability to transfer visual knowledge across skills. We use a dataset of 1M+ images spanning 10k+ visual concepts to demonstrate webly-supervised concept expansion for two existing GPVs (GPV-1 and VL-T5) on 3 benchmarks: 5 Coco-based datasets (80 primary concepts), a newly curated series of 5 datasets based on the OpenImages and VisualGenome repositories ( 500 concepts), and the Web-derived dataset (10k+ concepts). We also propose a new architecture, GPV-2 that supports a variety of tasks -- from vision tasks like classification and localization to vision+language tasks like QA and captioning, to more niche ones like human-object interaction detection. GPV-2 benefits hugely from web data and outperforms GPV-1 and VL-T5 across these benchmarks. Our data, code, and web demo are available at https://prior.allenai.org/projects/gpv2.


ASC me to Do Anything: Multi-task Training for Embodied AI

arXiv.org Artificial Intelligence

Embodied AI has seen steady progress across a diverse set of independent tasks. While these varied tasks have different end goals, the basic skills required to complete them successfully overlap significantly. In this paper, our goal is to leverage these shared skills to learn to perform multiple tasks jointly. We propose Atomic Skill Completion (ASC), an approach for multi-task training for Embodied AI, where a set of atomic skills shared across multiple tasks are composed together to perform the tasks. The key to the success of this approach is a pre-training scheme that decouples learning of the skills from the high-level tasks making joint training effective. We use ASC to train agents within the AI2-THOR environment to perform four interactive tasks jointly and find it to be remarkably effective. In a multi-task setting, ASC improves success rates by a factor of 2x on Seen scenes and 4x on Unseen scenes compared to no pre-training. Importantly, ASC enables us to train a multi-task agent that has a 52% higher Success Rate than training 4 independent single task agents. Finally, our hierarchical agents are more interpretable than traditional black-box architectures.


Iconary: A Pictionary-Based Game for Testing Multimodal Communication with Drawings and Text

arXiv.org Artificial Intelligence

Communicating with humans is challenging for AIs because it requires a shared understanding of the world, complex semantics (e.g., metaphors or analogies), and at times multi-modal gestures (e.g., pointing with a finger, or an arrow in a diagram). We investigate these challenges in the context of Iconary, a collaborative game of drawing and guessing based on Pictionary, that poses a novel challenge for the research community. In Iconary, a Guesser tries to identify a phrase that a Drawer is drawing by composing icons, and the Drawer iteratively revises the drawing to help the Guesser in response. This back-and-forth often uses canonical scenes, visual metaphor, or icon compositions to express challenging words, making it an ideal test for mixing language and visual/symbolic communication in AI. We propose models to play Iconary and train them on over 55,000 games between human players. Our models are skillful players and are able to employ world knowledge in language models to play with words unseen during training. Elite human players outperform our models, particularly at the drawing task, leaving an important gap for future research to address. We release our dataset, code, and evaluation setup as a challenge to the community at http://www.github.com/allenai/iconary.


ManipulaTHOR: A Framework for Visual Object Manipulation

arXiv.org Artificial Intelligence

The domain of Embodied AI has recently witnessed substantial progress, particularly in navigating agents within their environments. These early successes have laid the building blocks for the community to tackle tasks that require agents to actively interact with objects in their environment. Object manipulation is an established research domain within the robotics community and poses several challenges including manipulator motion, grasping and long-horizon planning, particularly when dealing with oft-overlooked practical setups involving visually rich and complex scenes, manipulation using mobile agents (as opposed to tabletop manipulation), and generalization to unseen environments and objects. We propose a framework for object manipulation built upon the physics-enabled, visually rich AI2-THOR framework and present a new challenge to the Embodied AI community known as ArmPointNav. This task extends the popular point navigation task to object manipulation and offers new challenges including 3D obstacle avoidance, manipulating objects in the presence of occlusion, and multi-object manipulation that necessitates long term planning. Popular learning paradigms that are successful on PointNav challenges show promise, but leave a large room for improvement.


GridToPix: Training Embodied Agents with Minimal Supervision

arXiv.org Artificial Intelligence

While deep reinforcement learning (RL) promises freedom from hand-labeled data, great successes, especially for Embodied AI, require significant work to create supervision via carefully shaped rewards. Indeed, without shaped rewards, i.e., with only terminal rewards, present-day Embodied AI results degrade significantly across Embodied AI problems from single-agent Habitat-based PointGoal Navigation (SPL drops from 55 to 0) and two-agent AI2-THOR-based Furniture Moving (success drops from 58% to 1%) to three-agent Google Football-based 3 vs. 1 with Keeper (game score drops from 0.6 to 0.1). As training from shaped rewards doesn't scale to more realistic tasks, the community needs to improve the success of training with terminal rewards. For this we propose GridToPix: 1) train agents with terminal rewards in gridworlds that generically mirror Embodied AI environments, i.e., they are independent of the task; 2) distill the learned policy into agents that reside in complex visual worlds. Despite learning from only terminal rewards with identical models and RL algorithms, GridToPix significantly improves results across tasks: from PointGoal Navigation (SPL improves from 0 to 64) and Furniture Moving (success improves from 1% to 25%) to football gameplay (game score improves from 0.1 to 0.6). GridToPix even helps to improve the results of shaped reward training.


Towards General Purpose Vision Systems

arXiv.org Artificial Intelligence

A special purpose learning system assumes knowledge of admissible tasks at design time. Adapting such a system to unforeseen tasks requires architecture manipulation such as adding an output head for each new task or dataset. In this work, we propose a task-agnostic vision-language system that accepts an image and a natural language task description and outputs bounding boxes, confidences, and text. The system supports a wide range of vision tasks such as classification, localization, question answering, captioning, and more. We evaluate the system's ability to learn multiple skills simultaneously, to perform tasks with novel skill-concept combinations, and to learn new skills efficiently and without forgetting.


X-LXMERT: Paint, Caption and Answer Questions with Multi-Modal Transformers

arXiv.org Artificial Intelligence

Mirroring the success of masked language models, vision-and-language counterparts like ViLBERT, LXMERT and UNITER have achieved state of the art performance on a variety of multimodal discriminative tasks like visual question answering and visual grounding. Recent work has also successfully adapted such models towards the generative task of image captioning. This begs the question: Can these models go the other way and generate images from pieces of text? Our analysis of a popular representative from this model family - LXMERT - finds that it is unable to generate rich and semantically meaningful imagery with its current training setup. We introduce X-LXMERT, an extension to LXMERT with training refinements including: discretizing visual representations, using uniform masking with a large range of masking ratios and aligning the right pre-training datasets to the right objectives which enables it to paint. X-LXMERT's image generation capabilities rival state of the art generative models while its question answering and captioning abilities remains comparable to LXMERT. Finally, we demonstrate the generality of these training refinements by adding image generation capabilities into UNITER to produce X-UNITER.


AllenAct: A Framework for Embodied AI Research

arXiv.org Artificial Intelligence

The domain of Embodied AI, in which agents learn to complete tasks through interaction with their environment from egocentric observations, has experienced substantial growth with the advent of deep reinforcement learning and increased interest from the computer vision, NLP, and robotics communities. This growth has been facilitated by the creation of a large number of simulated environments (such as AI2-THOR, Habitat and CARLA), tasks (like point navigation, instruction following, and embodied question answering), and associated leaderboards. While this diversity has been beneficial and organic, it has also fragmented the community: a huge amount of effort is required to do something as simple as taking a model trained in one environment and testing it in another. This discourages good science. We introduce AllenAct, a modular and flexible learning framework designed with a focus on the unique requirements of Embodied AI research. AllenAct provides first-class support for a growing collection of embodied environments, tasks and algorithms, provides reproductions of state-of-the-art models and includes extensive documentation, tutorials, start-up code, and pre-trained models. We hope that our framework makes Embodied AI more accessible and encourages new researchers to join this exciting area. The framework can be accessed at: https://allenact.org/


Bridging the Imitation Gap by Adaptive Insubordination

arXiv.org Artificial Intelligence

Why do agents often obtain better reinforcement learning policies when imitating a worse expert? We show that privileged information used by the expert is marginalized in the learned agent policy, resulting in an "imitation gap." Prior work bridges this gap via a progression from imitation learning to reinforcement learning. While often successful, gradual progression fails for tasks that require frequent switches between exploration and memorization skills. To better address these tasks and alleviate the imitation gap we propose 'Adaptive Insubordination' (ADVISOR), which dynamically reweights imitation and reward-based reinforcement learning losses during training, enabling switching between imitation and exploration. On a suite of challenging tasks, we show that ADVISOR outperforms pure imitation, pure reinforcement learning, as well as sequential combinations of these approaches.


A Cordial Sync: Going Beyond Marginal Policies for Multi-Agent Embodied Tasks

arXiv.org Artificial Intelligence

Autonomous agents must learn to collaborate. It is not scalable to develop a new centralized agent every time a task's difficulty outpaces a single agent's abilities. While multi-agent collaboration research has flourished in gridworld-like environments, relatively little work has considered visually rich domains. Addressing this, we introduce the novel task FurnMove in which agents work together to move a piece of furniture through a living room to a goal. Unlike existing tasks, FurnMove requires agents to coordinate at every timestep. We identify two challenges when training agents to complete FurnMove: existing decentralized action sampling procedures do not permit expressive joint action policies and, in tasks requiring close coordination, the number of failed actions dominates successful actions. To confront these challenges we introduce SYNC-policies (synchronize your actions coherently) and CORDIAL (coordination loss). Using SYNC-policies and CORDIAL, our agents achieve a 58% completion rate on FurnMove, an impressive absolute gain of 25 percentage points over competitive decentralized baselines. Our dataset, code, and pretrained models are available at https://unnat.github.io/cordial-sync .