Plotting

 Kejariwal, Arun


Pre-train and Search: Efficient Embedding Table Sharding with Pre-trained Neural Cost Models

arXiv.org Artificial Intelligence

Sharding a large machine learning model across multiple devices to balance the costs is important in distributed training. This is challenging because partitioning is NP-hard, and estimating the costs accurately and efficiently is difficult. In this work, we explore a "pre-train, and search" paradigm for efficient sharding. The idea is to pre-train a universal and once-for-all neural network to predict the costs of all the possible shards, which serves as an efficient sharding simulator. Built upon this pre-trained cost model, we then perform an online search to identify the best sharding plans given any specific sharding task. We instantiate this idea in deep learning recommendation models (DLRMs) and propose NeuroShard for embedding table sharding. NeuroShard pre-trains neural cost models on augmented tables to cover various sharding scenarios. Then it identifies the best column-wise and table-wise sharding plans with beam search and greedy grid search, respectively. Experiments show that NeuroShard significantly and consistently outperforms the state-of-the-art on the benchmark sharding dataset, achieving up to 23.8% improvement. When deployed in an ultra-large production DLRM with multi-terabyte embedding tables, NeuroShard achieves 11.6% improvement in embedding costs over the state-of-the-art, which translates to 6.6% end-to-end training throughput improvement. To facilitate future research of the "pre-train, and search" paradigm in ML for Systems, we open-source our code at https://github.com/daochenzha/neuroshard


Fast Distributed Training of Deep Neural Networks: Dynamic Communication Thresholding for Model and Data Parallelism

arXiv.org Machine Learning

Data Parallelism (DP) and Model Parallelism (MP) are two common paradigms to enable large-scale distributed training of neural networks. Recent trends, such as the improved model performance of deeper and wider neural networks when trained with billions of data points, have prompted the use of hybrid parallelism---a paradigm that employs both DP and MP to scale further parallelization for machine learning. Hybrid training allows compute power to increase, but it runs up against the key bottleneck of communication overhead that hinders scalability. In this paper, we propose a compression framework called Dynamic Communication Thresholding (DCT) for communication-efficient hybrid training. DCT filters the entities to be communicated across the network through a simple hard-thresholding function, allowing only the most relevant information to pass through. For communication efficient DP, DCT compresses the parameter gradients sent to the parameter server during model synchronization, while compensating for the introduced errors with known techniques. For communication efficient MP, DCT incorporates a novel technique to compress the activations and gradients sent across the network during the forward and backward propagation, respectively. This is done by identifying and updating only the most relevant neurons of the neural network for each training sample in the data. Under modest assumptions, we show that the convergence of training is maintained with DCT. We evaluate DCT on natural language processing and recommender system models. DCT reduces overall communication by 20x, improving end-to-end training time on industry scale models by 37%. Moreover, we observe an improvement in the trained model performance, as the induced sparsity is possibly acting as an implicit sparsity based regularization.


On the Runtime-Efficacy Trade-off of Anomaly Detection Techniques for Real-Time Streaming Data

arXiv.org Machine Learning

Ever growing volume and velocity of data coupled with decreasing attention span of end users underscore the critical need for real-time analytics. In this regard, anomaly detection plays a key role as an application as well as a means to verify data fidelity. Although the subject of anomaly detection has been researched for over 100 years in a multitude of disciplines such as, but not limited to, astronomy, statistics, manufacturing, econometrics, marketing, most of the existing techniques cannot be used as is on real-time data streams. Further, the lack of characterization of performance -- both with respect to real-timeliness and accuracy -- on production data sets makes model selection very challenging. To this end, we present an in-depth analysis, geared towards real-time streaming data, of anomaly detection techniques. Given the requirements with respect to real-timeliness and accuracy, the analysis presented in this paper should serve as a guide for selection of the "best" anomaly detection technique. To the best of our knowledge, this is the first characterization of anomaly detection techniques proposed in very diverse set of fields, using production data sets corresponding to a wide set of application domains.