Well File:

 Karthik Narasimhan


A Generalized Algorithm for Multi-Objective Reinforcement Learning and Policy Adaptation

Neural Information Processing Systems

We introduce a new algorithm for multi-objective reinforcement learning (MORL) with linear preferences, with the goal of enabling few-shot adaptation to new tasks. In MORL, the aim is to learn policies over multiple competing objectives whose relative importance (preferences) is unknown to the agent. While this alleviates dependence on scalar reward design, the expected return of a policy can change significantly with varying preferences, making it challenging to learn a single model to produce optimal policies under different preference conditions. We propose a generalized version of the Bellman equation to learn a single parametric representation for optimal policies over the space of all possible preferences. After an initial learning phase, our agent can execute the optimal policy under any given preference, or automatically infer an underlying preference with very few samples. Experiments across four different domains demonstrate the effectiveness of our approach.


A Generalized Algorithm for Multi-Objective Reinforcement Learning and Policy Adaptation

Neural Information Processing Systems

We introduce a new algorithm for multi-objective reinforcement learning (MORL) with linear preferences, with the goal of enabling few-shot adaptation to new tasks. In MORL, the aim is to learn policies over multiple competing objectives whose relative importance (preferences) is unknown to the agent. While this alleviates dependence on scalar reward design, the expected return of a policy can change significantly with varying preferences, making it challenging to learn a single model to produce optimal policies under different preference conditions. We propose a generalized version of the Bellman equation to learn a single parametric representation for optimal policies over the space of all possible preferences. After an initial learning phase, our agent can execute the optimal policy under any given preference, or automatically infer an underlying preference with very few samples. Experiments across four different domains demonstrate the effectiveness of our approach.


Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation

Neural Information Processing Systems

Learning goal-directed behavior in environments with sparse feedback is a major challenge for reinforcement learning algorithms. One of the key difficulties is insufficient exploration, resulting in an agent being unable to learn robust policies. Intrinsically motivated agents can explore new behavior for their own sake rather than to directly solve external goals. Such intrinsic behaviors could eventually help the agent solve tasks posed by the environment. We present hierarchical-DQN (h-DQN), a framework to integrate hierarchical action-value functions, operating at different temporal scales, with goal-driven intrinsically motivated deep reinforcement learning. A top-level q-value function learns a policy over intrinsic goals, while a lower-level function learns a policy over atomic actions to satisfy the given goals.