Kandasamy, Kirthevasan
On Estimating $L_2^2$ Divergence
Krishnamurthy, Akshay, Kandasamy, Kirthevasan, Poczos, Barnabas, Wasserman, Larry
We give a comprehensive theoretical characterization of a nonparametric estimator for the $L_2^2$ divergence between two continuous distributions. We first bound the rate of convergence of our estimator, showing that it is $\sqrt{n}$-consistent provided the densities are sufficiently smooth. In this smooth regime, we then show that our estimator is asymptotically normal, construct asymptotic confidence intervals, and establish a Berry-Ess\'{e}en style inequality characterizing the rate of convergence to normality. We also show that this estimator is minimax optimal.
Nonparametric Estimation of Renyi Divergence and Friends
Krishnamurthy, Akshay, Kandasamy, Kirthevasan, Poczos, Barnabas, Wasserman, Larry
We consider nonparametric estimation of $L_2$, Renyi-$\alpha$ and Tsallis-$\alpha$ divergences between continuous distributions. Our approach is to construct estimators for particular integral functionals of two densities and translate them into divergence estimators. For the integral functionals, our estimators are based on corrections of a preliminary plug-in estimator. We show that these estimators achieve the parametric convergence rate of $n^{-1/2}$ when the densities' smoothness, $s$, are both at least $d/4$ where $d$ is the dimension. We also derive minimax lower bounds for this problem which confirm that $s > d/4$ is necessary to achieve the $n^{-1/2}$ rate of convergence. We validate our theoretical guarantees with a number of simulations.