Goto

Collaborating Authors

 Kandasamy, Kirthevasan


Tuning Hyperparameters without Grad Students: Scalable and Robust Bayesian Optimisation with Dragonfly

arXiv.org Artificial Intelligence

Bayesian Optimisation (BO), refers to a suite of techniques for global optimisation of expensive black box functions, which use introspective Bayesian models of the function to efficiently find the optimum. While BO has been applied successfully in many applications, modern optimisation tasks usher in new challenges where conventional methods fail spectacularly. In this work, we present Dragonfly, an open source Python library for scalable and robust BO. Dragonfly incorporates multiple recently developed methods that allow BO to be applied in challenging real world settings; these include better methods for handling higher dimensional domains, methods for handling multi-fidelity evaluations when cheap approximations of an expensive function are available, methods for optimising over structured combinatorial spaces, such as the space of neural network architectures, and methods for handling parallel evaluations. Additionally, we develop new methodological improvements in BO for selecting the Bayesian model, selecting the acquisition function, and optimising over complex domains with different variable types and additional constraints. We compare Dragonfly to a suite of other packages and algorithms for global optimisation and demonstrate that when the above methods are integrated, they enable significant improvements in the performance of BO. The Dragonfly library is available at dragonfly.github.io.


ProBO: a Framework for Using Probabilistic Programming in Bayesian Optimization

arXiv.org Machine Learning

Optimizing an expensive-to-query function is a common task in science and engineering, where it is beneficial to keep the number of queries to a minimum. A popular strategy is Bayesian optimization (BO), which leverages probabilistic models for this task. Most BO today uses Gaussian processes (GPs), or a few other surrogate models. However, there is a broad set of Bayesian modeling techniques that we may want to use to capture complex systems and reduce the number of queries. Probabilistic programs (PPs) are modern tools that allow for flexible model composition, incorporation of prior information, and automatic inference. In this paper, we develop ProBO, a framework for BO using only standard operations common to most PPs. This allows a user to drop in an arbitrary PP implementation and use it directly in BO. To do this, we describe black box versions of popular acquisition functions that can be used in our framework automatically, without model-specific derivation, and show how to optimize these functions. We also introduce a model, which we term the Bayesian Product of Experts, that integrates into ProBO and can be used to combine information from multiple models implemented with different PPs. We show empirical results using multiple PP implementations, and compare against standard BO methods.


Neural Architecture Search with Bayesian Optimisation and Optimal Transport

Neural Information Processing Systems

Bayesian Optimisation (BO) refers to a class of methods for global optimisation of a function f which is only accessible via point evaluations. It is typically used in settings where f is expensive to evaluate. A common use case for BO in machine learning is model selection, where it is not possible to analytically model the generalisation performance of a statistical model, and we resort to noisy and expensive training and validation procedures to choose the best model. Conventional BO methods have focused on Euclidean and categorical domains, which, in the context of model selection, only permits tuning scalar hyper-parameters of machine learning algorithms. However, with the surge of interest in deep learning, there is an increasing demand to tune neural network architectures. In this work, we develop NASBOT, a Gaussian process based BO framework for neural architecture search. To accomplish this, we develop a distance metric in the space of neural network architectures which can be computed efficiently via an optimal transport program. This distance might be of independent interest to the deep learning community as it may find applications outside of BO. We demonstrate that NASBOT outperforms other alternatives for architecture search in several cross validation based model selection tasks on multi-layer perceptrons and convolutional neural networks.


Noisy Blackbox Optimization with Multi-Fidelity Queries: A Tree Search Approach

arXiv.org Machine Learning

We study the problem of black-box optimization of a noisy function in the presence of low-cost approximations or fidelities, which is motivated by problems like hyper-parameter tuning. In hyper-parameter tuning evaluating the black-box function at a point involves training a learning algorithm on a large data-set at a particular hyper-parameter and evaluating the validation error. Even a single such evaluation can be prohibitively expensive. Therefore, it is beneficial to use low-cost approximations, like training the learning algorithm on a sub-sampled version of the whole data-set. These low-cost approximations/fidelities can however provide a biased and noisy estimate of the function value. In this work, we incorporate the multi-fidelity setup in the powerful framework of noisy black-box optimization through tree-like hierarchical partitions. We propose a multi-fidelity bandit based tree-search algorithm for the problem and provide simple regret bounds for our algorithm. Finally, we validate the performance of our algorithm on real and synthetic datasets, where it outperforms several benchmarks.


A Flexible Multi-Objective Bayesian Optimization Approach using Random Scalarizations

arXiv.org Machine Learning

Many real world applications can be framed as multi-objective optimization problems, where we wish to simultaneously optimize for multiple criteria. Bayesian optimization techniques for the multi-objective setting are pertinent when the evaluation of the functions in question are expensive. Traditional methods for multi-objective optimization, both Bayesian and otherwise, are aimed at recovering the Pareto front of these objectives. However, we argue that recovering the entire Pareto front may not be aligned with our goals in practice. For example, while a practitioner might desire to identify Pareto optimal points, she may wish to focus only on a particular region of the Pareto front due to external considerations. In this work we propose an approach based on random scalarizations of the objectives. We demonstrate that our approach can focus its sampling on certain regions of the Pareto front while being flexible enough to sample from the entire Pareto front if required. Furthermore, our approach is less computationally demanding compared to other existing approaches. In this paper, we also analyse a notion of regret in the multi-objective setting and obtain sublinear regret bounds. We compare the proposed approach to other state-of-the-art approaches on both synthetic and real-life experiments. The results demonstrate superior performance of our proposed algorithm in terms of flexibility, scalability and regret.


Myopic Bayesian Design of Experiments via Posterior Sampling and Probabilistic Programming

arXiv.org Artificial Intelligence

We design a new myopic strategy for a wide class of sequential design of experiment (DOE) problems, where the goal is to collect data in order to to fulfil a certain problem specific goal. Our approach, Myopic Posterior Sampling (MPS), is inspired by the classical posterior (Thompson) sampling algorithm for multi-armed bandits and leverages the flexibility of probabilistic programming and approximate Bayesian inference to address a broad set of problems. Empirically, this general-purpose strategy is competitive with more specialised methods in a wide array of DOE tasks, and more importantly, enables addressing complex DOE goals where no existing method seems applicable. On the theoretical side, we leverage ideas from adaptive submodularity and reinforcement learning to derive conditions under which MPS achieves sublinear regret against natural benchmark policies.


Neural Architecture Search with Bayesian Optimisation and Optimal Transport

arXiv.org Machine Learning

Bayesian Optimisation (BO) refers to a class of methods for global optimisation of a function $f$ which is only accessible via point evaluations. It is typically used in settings where $f$ is expensive to evaluate. A common use case for BO in machine learning is model selection, where it is not possible to analytically model the generalisation performance of a statistical model, and we resort to noisy and expensive training and validation procedures to choose the best model. Conventional BO methods have focused on Euclidean and categorical domains, which, in the context of model selection, only permits tuning scalar hyper-parameters of machine learning algorithms. However, with the surge of interest in deep learning, there is an increasing demand to tune neural network \emph{architectures}. In this work, we develop NASBOT, a Gaussian process based BO framework for neural architecture search. To accomplish this, we develop a distance metric in the space of neural network architectures which can be computed efficiently via an optimal transport program. This distance might be of independent interest to the deep learning community as it may find applications outside of BO. We demonstrate that NASBOT outperforms other alternatives for architecture search in several cross validation based model selection tasks on multi-layer perceptrons and convolutional neural networks.


Asynchronous Parallel Bayesian Optimisation via Thompson Sampling

arXiv.org Machine Learning

We design and analyse variations of the classical Thompson sampling (TS) procedure for Bayesian optimisation (BO) in settings where function evaluations are expensive, but can be performed in parallel. Our theoretical analysis shows that a direct application of the sequential Thompson sampling algorithm in either synchronous or asynchronous parallel settings yields a surprisingly powerful result: making $n$ evaluations distributed among $M$ workers is essentially equivalent to performing $n$ evaluations in sequence. Further, by modeling the time taken to complete a function evaluation, we show that, under a time constraint, asynchronously parallel TS achieves asymptotically lower regret than both the synchronous and sequential versions. These results are complemented by an experimental analysis, showing that asynchronous TS outperforms a suite of existing parallel BO algorithms in simulations and in a hyper-parameter tuning application in convolutional neural networks. In addition to these, the proposed procedure is conceptually and computationally much simpler than existing work for parallel BO.


Multi-fidelity Gaussian Process Bandit Optimisation

arXiv.org Artificial Intelligence

In many scientific and engineering applications, we are tasked with the optimisation of an expensive to evaluate black box function $f$. Traditional settings for this problem assume just the availability of this single function. However, in many cases, cheap approximations to $f$ may be obtainable. For example, the expensive real world behaviour of a robot can be approximated by a cheap computer simulation. We can use these approximations to eliminate low function value regions cheaply and use the expensive evaluations of $f$ in a small but promising region and speedily identify the optimum. We formalise this task as a \emph{multi-fidelity} bandit problem where the target function and its approximations are sampled from a Gaussian process. We develop MF-GP-UCB, a novel method based on upper confidence bound techniques. In our theoretical analysis we demonstrate that it exhibits precisely the above behaviour, and achieves better regret than strategies which ignore multi-fidelity information. Empirically, MF-GP-UCB outperforms such naive strategies and other multi-fidelity methods on several synthetic and real experiments.


Multi-fidelity Bayesian Optimisation with Continuous Approximations

arXiv.org Machine Learning

Bandit methods for black-box optimisation, such as Bayesian optimisation, are used in a variety of applications including hyper-parameter tuning and experiment design. Recently, \emph{multi-fidelity} methods have garnered considerable attention since function evaluations have become increasingly expensive in such applications. Multi-fidelity methods use cheap approximations to the function of interest to speed up the overall optimisation process. However, most multi-fidelity methods assume only a finite number of approximations. In many practical applications however, a continuous spectrum of approximations might be available. For instance, when tuning an expensive neural network, one might choose to approximate the cross validation performance using less data $N$ and/or few training iterations $T$. Here, the approximations are best viewed as arising out of a continuous two dimensional space $(N,T)$. In this work, we develop a Bayesian optimisation method, BOCA, for this setting. We characterise its theoretical properties and show that it achieves better regret than than strategies which ignore the approximations. BOCA outperforms several other baselines in synthetic and real experiments.