Kanan, Christopher
Measuring Catastrophic Forgetting in Neural Networks
Kemker, Ronald (Rochester Institute of Technology) | McClure, Marc (Rochester Institute of Technology) | Abitino, Angelina (Swarthmore College) | Hayes, Tyler L. (Rochester Institute of Technology) | Kanan, Christopher (Rochester Institute of Technology)
Deep neural networks are used in many state-of-the-art systems for machine perception. Once a network is trained to do a specific task, e.g., bird classification, it cannot easily be trained to do new tasks, e.g., incrementally learning to recognize additional bird species or learning an entirely different task such as flower recognition. When new tasks are added, typical deep neural networks are prone to catastrophically forgetting previous tasks. Networks that are capable of assimilating new information incrementally, much like how humans form new memories over time, will be more efficient than re-training the model from scratch each time a new task needs to be learned. There have been multiple attempts to develop schemes that mitigate catastrophic forgetting, but these methods have not been directly compared, the tests used to evaluate them vary considerably, and these methods have only been evaluated on small-scale problems (e.g., MNIST). In this paper, we introduce new metrics and benchmarks for directly comparing five different mechanisms designed to mitigate catastrophic forgetting in neural networks: regularization, ensembling, rehearsal, dual-memory, and sparse-coding. Our experiments on real-world images and sounds show that the mechanism(s) that are critical for optimal performance vary based on the incremental training paradigm and type of data being used, but they all demonstrate that the catastrophic forgetting problem is not yet solved.
Algorithms for Semantic Segmentation of Multispectral Remote Sensing Imagery using Deep Learning
Kemker, Ronald, Salvaggio, Carl, Kanan, Christopher
Deep convolutional neural networks (DCNNs) have been used to achieve state-of-the-art performance on many computer vision tasks (e.g., object recognition, object detection, semantic segmentation) thanks to a large repository of annotated image data. Large labeled datasets for other sensor modalities, e.g., multispectral imagery (MSI), are not available due to the large cost and manpower required. In this paper, we adapt state-of-the-art DCNN frameworks in computer vision for semantic segmentation for MSI imagery. To overcome label scarcity for MSI data, we substitute real MSI for generated synthetic MSI in order to initialize a DCNN framework. We evaluate our network initialization scheme on the new RIT-18 dataset that we present in this paper. This dataset contains very-high resolution MSI collected by an unmanned aircraft system. The models initialized with synthetic imagery were less prone to over-fitting and provide a state-of-the-art baseline for future work.
Visual Question Answering: Datasets, Algorithms, and Future Challenges
Kafle, Kushal, Kanan, Christopher
Visual Question Answering (VQA) is a recent problem in computer vision and natural language processing that has garnered a large amount of interest from the deep learning, computer vision, and natural language processing communities. In VQA, an algorithm needs to answer text-based questions about images. Since the release of the first VQA dataset in 2014, additional datasets have been released and many algorithms have been proposed. In this review, we critically examine the current state of VQA in terms of problem formulation, existing datasets, evaluation metrics, and algorithms. In particular, we discuss the limitations of current datasets with regard to their ability to properly train and assess VQA algorithms. We then exhaustively review existing algorithms for VQA. Finally, we discuss possible future directions for VQA and image understanding research.