Well File:
- Well Planning ( results)
- Shallow Hazard Analysis ( results)
- Well Plat ( results)
- Wellbore Schematic ( results)
- Directional Survey ( results)
- Fluid Sample ( results)
- Log ( results)
- Density ( results)
- Gamma Ray ( results)
- Mud ( results)
- Resistivity ( results)
- Report ( results)
- Daily Report ( results)
- End of Well Report ( results)
- Well Completion Report ( results)
- Rock Sample ( results)
Kaiyi Ji
Minimax Estimation of Neural Net Distance
Kaiyi Ji, Yingbin Liang
An important class of distance metrics proposed for training generative adversarial networks (GANs) is the integral probability metric (IPM), in which the neural net distance captures the practical GAN training via two neural networks. This paper investigates the minimax estimation problem of the neural net distance based on samples drawn from the distributions. We develop the first known minimax lower bound on the estimation error of the neural net distance, and an upper bound tighter than an existing bound on the estimator error for the empirical neural net distance. Our lower and upper bounds match not only in the order of the sample size but also in terms of the norm of the parameter matrices of neural networks, which justifies the empirical neural net distance as a good approximation of the true neural net distance for training GANs in practice.
SpiderBoost and Momentum: Faster Variance Reduction Algorithms
Zhe Wang, Kaiyi Ji, Yi Zhou, Yingbin Liang, Vahid Tarokh
SARAH and SPIDER are two recently developed stochastic variance-reduced algorithms, and SPIDER has been shown to achieve a near-optimal first-order oracle complexity in smooth nonconvex optimization. However, SPIDER uses an accuracy-dependent stepsize that slows down the convergence in practice, and cannot handle objective functions that involve nonsmooth regularizers. In this paper, we propose SpiderBoost as an improved scheme, which allows to use a much larger constant-level stepsize while maintaining the same near-optimal oracle complexity, and can be extended with proximal mapping to handle composite optimization (which is nonsmooth and nonconvex) with provable convergence guarantee.
SpiderBoost and Momentum: Faster Variance Reduction Algorithms
Zhe Wang, Kaiyi Ji, Yi Zhou, Yingbin Liang, Vahid Tarokh
SARAH and SPIDER are two recently developed stochastic variance-reduced algorithms, and SPIDER has been shown to achieve a near-optimal first-order oracle complexity in smooth nonconvex optimization. However, SPIDER uses an accuracy-dependent stepsize that slows down the convergence in practice, and cannot handle objective functions that involve nonsmooth regularizers. In this paper, we propose SpiderBoost as an improved scheme, which allows to use a much larger constant-level stepsize while maintaining the same near-optimal oracle complexity, and can be extended with proximal mapping to handle composite optimization (which is nonsmooth and nonconvex) with provable convergence guarantee.