Not enough data to create a plot.
Try a different view from the menu above.
Junzhou Huang
NAT: Neural Architecture Transformer for Accurate and Compact Architectures
Yong Guo, Yin Zheng, Mingkui Tan, Qi Chen, Jian Chen, Peilin Zhao, Junzhou Huang
Designing effective architectures is one of the key factors behind the success of deep neural networks. Existing deep architectures are either manually designed or automatically searched by some Neural Architecture Search (NAS) methods. However, even a well-searched architecture may still contain many non-significant or redundant modules or operations (e.g., convolution or pooling), which may not only incur substantial memory consumption and computation cost but also deteriorate the performance. Thus, it is necessary to optimize the operations inside an architecture to improve the performance without introducing extra computation cost. Unfortunately, such a constrained optimization problem is NP-hard. To make the problem feasible, we cast the optimization problem into a Markov decision process (MDP) and seek to learn a Neural Architecture Transformer (NAT) to replace the redundant operations with the more computationally efficient ones (e.g., skip connection or directly removing the connection). Based on MDP, we learn NAT by exploiting reinforcement learning to obtain the optimization policies w.r.t.
DTWNet: a Dynamic Time Warping Network
Xingyu Cai, Tingyang Xu, Jinfeng Yi, Junzhou Huang, Sanguthevar Rajasekaran
Dynamic Time Warping (DTW) is widely used as a similarity measure in various domains. Due to its invariance against warping in the time axis, DTW provides more meaningful discrepancy measurements between two signals than other distance measures. In this paper, we propose a novel component in an artificial neural network. In contrast to the previous successful usage of DTW as a loss function, the proposed framework leverages DTW to obtain a better feature extraction. For the first time, the DTW loss is theoretically analyzed, and a stochastic backpropogation scheme is proposed to improve the accuracy and efficiency of the DTW learning. We also demonstrate that the proposed framework can be used as a data analysis tool to perform data decomposition.
DTWNet: a Dynamic Time Warping Network
Xingyu Cai, Tingyang Xu, Jinfeng Yi, Junzhou Huang, Sanguthevar Rajasekaran
Dynamic Time Warping (DTW) is widely used as a similarity measure in various domains. Due to its invariance against warping in the time axis, DTW provides more meaningful discrepancy measurements between two signals than other distance measures. In this paper, we propose a novel component in an artificial neural network. In contrast to the previous successful usage of DTW as a loss function, the proposed framework leverages DTW to obtain a better feature extraction. For the first time, the DTW loss is theoretically analyzed, and a stochastic backpropogation scheme is proposed to improve the accuracy and efficiency of the DTW learning. We also demonstrate that the proposed framework can be used as a data analysis tool to perform data decomposition.
NAT: Neural Architecture Transformer for Accurate and Compact Architectures
Yong Guo, Yin Zheng, Mingkui Tan, Qi Chen, Jian Chen, Peilin Zhao, Junzhou Huang
Designing effective architectures is one of the key factors behind the success of deep neural networks. Existing deep architectures are either manually designed or automatically searched by some Neural Architecture Search (NAS) methods. However, even a well-searched architecture may still contain many non-significant or redundant modules or operations (e.g., convolution or pooling), which may not only incur substantial memory consumption and computation cost but also deteriorate the performance. Thus, it is necessary to optimize the operations inside an architecture to improve the performance without introducing extra computation cost. Unfortunately, such a constrained optimization problem is NP-hard. To make the problem feasible, we cast the optimization problem into a Markov decision process (MDP) and seek to learn a Neural Architecture Transformer (NAT) to replace the redundant operations with the more computationally efficient ones (e.g., skip connection or directly removing the connection). Based on MDP, we learn NAT by exploiting reinforcement learning to obtain the optimization policies w.r.t.
Discrimination-aware Channel Pruning for Deep Neural Networks
Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu, Yong Guo, Qingyao Wu, Junzhou Huang, Jinhui Zhu
Channel pruning is one of the predominant approaches for deep model compression. Existing pruning methods either train from scratch with sparsity constraints on channels, or minimize the reconstruction error between the pre-trained feature maps and the compressed ones. Both strategies suffer from some limitations: the former kind is computationally expensive and difficult to converge, whilst the latter kind optimizes the reconstruction error but ignores the discriminative power of channels. In this paper, we investigate a simple-yet-effective method called discrimination-aware channel pruning (DCP) to choose those channels that really contribute to discriminative power. To this end, we introduce additional discrimination-aware losses into the network to increase the discriminative power of intermediate layers and then select the most discriminative channels for each layer by considering the additional loss and the reconstruction error. Last, we propose a greedy algorithm to conduct channel selection and parameter optimization in an iterative way. Extensive experiments demonstrate the effectiveness of our method. For example, on ILSVRC-12, our pruned ResNet-50 with 30% reduction of channels outperforms the baseline model by 0.39% in top-1 accuracy.
Weakly Supervised Dense Event Captioning in Videos
Xuguang Duan, Wenbing Huang, Chuang Gan, Jingdong Wang, Wenwu Zhu, Junzhou Huang
Dense event captioning aims to detect and describe all events of interest contained in a video. Despite the advanced development in this area, existing methods tackle this task by making use of dense temporal annotations, which is dramatically source-consuming. This paper formulates a new problem: weakly supervised dense event captioning, which does not require temporal segment annotations for model training. Our solution is based on the one-to-one correspondence assumption, each caption describes one temporal segment, and each temporal segment has one caption, which holds in current benchmark datasets and most real-world cases. We decompose the problem into a pair of dual problems: event captioning and sentence localization and present a cycle system to train our model. Extensive experimental results are provided to demonstrate the ability of our model on both dense event captioning and sentence localization in videos.