Juan, Da-Cheng
Graph Autoencoders with Deconvolutional Networks
Li, Jia, Yu, Tomas, Juan, Da-Cheng, Gopalan, Arjun, Cheng, Hong, Tomkins, Andrew
Recent studies have indicated that Graph Convolutional Networks (GCNs) act as a low pass filter in spectral domain and encode smoothed node representations. In this paper, we consider their opposite, namely Graph Deconvolutional Networks (GDNs) that reconstruct graph signals from smoothed node representations. We motivate the design of Graph Deconvolutional Networks via a combination of inverse filters in spectral domain and de-noising layers in wavelet domain, as the inverse operation results in a high pass filter and may amplify the noise. Based on the proposed GDN, we further propose a graph autoencoder framework that first encodes smoothed graph representations with GCN and then decodes accurate graph signals with GDN. We demonstrate the effectiveness of the proposed method on several tasks including unsupervised graph-level representation, social recommendation and graph generation. Autoencoders have demonstrated excellent performance on tasks such as unsupervised representation learning (Bengio, 2009) and de-noising (Vincent et al., 2010). Recently, several studies (Zeiler & Fergus, 2014; Long et al., 2015) have demonstrated that the performance of autoencoders can be further improved by encoding with Convolutional Networks and decoding with Deconvolutional Networks (Zeiler et al., 2010). Notably, Noh et al. (2015) present a novel symmetric architecture that provides a bottom-up mapping from input signals to latent hierarchical feature space with {convolution, pooling} operations and then maps the latent representation back to the input space with {deconvolution, unpooling} operations. While this architecture has been successful when processing features with structures existed in the Euclidean space (e.g., images), recently there has been a surging interest in applying such a framework on non-Euclidean data like graphs.
COCO-GAN: Generation by Parts via Conditional Coordinating
Lin, Chieh Hubert, Chang, Chia-Che, Chen, Yu-Sheng, Juan, Da-Cheng, Wei, Wei, Chen, Hwann-Tzong
Humans can only interact with part of the surrounding environment due to biological restrictions. Therefore, we learn to reason the spatial relationships across a series of observations to piece together the surrounding environment. Inspired by such behavior and the fact that machines also have computational constraints, we propose \underline{CO}nditional \underline{CO}ordinate GAN (COCO-GAN) of which the generator generates images by parts based on their spatial coordinates as the condition. On the other hand, the discriminator learns to justify realism across multiple assembled patches by global coherence, local appearance, and edge-crossing continuity. Despite the full images are never generated during training, we show that COCO-GAN can produce \textbf{state-of-the-art-quality} full images during inference. We further demonstrate a variety of novel applications enabled by teaching the network to be aware of coordinates. First, we perform extrapolation to the learned coordinate manifold and generate off-the-boundary patches. Combining with the originally generated full image, COCO-GAN can produce images that are larger than training samples, which we called "beyond-boundary generation". We then showcase panorama generation within a cylindrical coordinate system that inherently preserves horizontally cyclic topology. On the computation side, COCO-GAN has a built-in divide-and-conquer paradigm that reduces memory requisition during training and inference, provides high-parallelism, and can generate parts of images on-demand.
Improving Adversarial Robustness via Guided Complement Entropy
Chen, Hao-Yun, Liang, Jhao-Hong, Chang, Shih-Chieh, Pan, Jia-Yu, Chen, Yu-Ting, Wei, Wei, Juan, Da-Cheng
Model robustness has been an important issue, since adding small adversarial perturbations to images is sufficient to drive the model accuracy down to nearly zero. In this paper, we propose a new training objective "Guided Complement Entropy" (GCE) that has dual desirable effects: (a) neutralizing the predicted probabilities of incorrect classes, and (b) maximizing the predicted probability of the ground-truth class, particularly when (a) is achieved. Training with GCE encourages models to learn latent representations where samples of different classes form distinct clusters, which we argue, improves the model robustness against adversarial perturbations. Furthermore, compared with the state-of-the-arts trained with cross-entropy, same models trained with GCE achieve significant improvements on the robustness against white-box adversarial attacks, both with and without adversarial training. When no attack is present, training with GCE also outperforms cross-entropy in terms of model accuracy.
Complement Objective Training
Chen, Hao-Yun, Wang, Pei-Hsin, Liu, Chun-Hao, Chang, Shih-Chieh, Pan, Jia-Yu, Chen, Yu-Ting, Wei, Wei, Juan, Da-Cheng
Learning with a primary objective, such as softmax cross entropy for classification and sequence generation, has been the norm for training deep neural networks for years. Although being a widely-adopted approach, using cross entropy as the primary objective exploits mostly the information from the ground-truth class for maximizing data likelihood, and largely ignores information from the complement (incorrect) classes. We argue that, in addition to the primary objective, training also using a complement objective that leverages information from the complement classes can be effective in improving model performance. This motivates us to study a new training paradigm that maximizes the likelihood of the groundtruth class while neutralizing the probabilities of the complement classes. We conduct extensive experiments on multiple tasks ranging from computer vision to natural language understanding. The experimental results confirm that, compared to the conventional training with just one primary objective, training also with the complement objective further improves the performance of the state-of-the-art models across all tasks. In addition to the accuracy improvement, we also show that models trained with both primary and complement objectives are more robust to single-step adversarial attacks.
Graph-RISE: Graph-Regularized Image Semantic Embedding
Juan, Da-Cheng, Lu, Chun-Ta, Li, Zhen, Peng, Futang, Timofeev, Aleksei, Chen, Yi-Ting, Gao, Yaxi, Duerig, Tom, Tomkins, Andrew, Ravi, Sujith
Learning image representations to capture fine-grained semantics has been a challenging and important task enabling many applications such as image search and clustering. In this paper, we present Graph-Regularized Image Semantic Embedding (Graph-RISE), a large-scale neural graph learning framework that allows us to train embeddings to discriminate an unprecedented O(40M) ultra-fine-grained semantic labels. Graph-RISE outperforms state-of-the-art image embedding algorithms on several evaluation tasks, including image classification and triplet ranking. We provide case studies to demonstrate that, qualitatively, image retrieval based on Graph-RISE effectively captures semantics and, compared to the state-of-the-art, differentiates nuances at levels that are closer to human-perception.
InstaNAS: Instance-aware Neural Architecture Search
Cheng, An-Chieh, Lin, Chieh Hubert, Juan, Da-Cheng, Wei, Wei, Sun, Min
Neural Architecture Search (NAS) aims at finding one "single" architecture that achieves the best accuracy for a given task such as image recognition.In this paper, we study the instance-level variation,and demonstrate that instance-awareness is an important yet currently missing component of NAS. Based on this observation, we propose InstaNAS for searching toward instance-level architectures;the controller is trained to search and form a "distribution of architectures" instead of a single final architecture. Then during the inference phase, the controller selects an architecture from the distribution, tailored for each unseen image to achieve both high accuracy and short latency. The experimental results show that InstaNAS reduces the inference latency without compromising classification accuracy. On average, InstaNAS achieves 48.9% latency reduction on CIFAR-10 and 40.2% latency reduction on CIFAR-100 with respect to MobileNetV2 architecture.
Searching Toward Pareto-Optimal Device-Aware Neural Architectures
Cheng, An-Chieh, Dong, Jin-Dong, Hsu, Chi-Hung, Chang, Shu-Huan, Sun, Min, Chang, Shih-Chieh, Pan, Jia-Yu, Chen, Yu-Ting, Wei, Wei, Juan, Da-Cheng
Recent breakthroughs in Neural Architectural Search (NAS) have achieved state-of-the-art performance in many tasks such as image classification and language understanding. However, most existing works only optimize for model accuracy and largely ignore other important factors imposed by the underlying hardware and devices, such as latency and energy, when making inference. In this paper, we first introduce the problem of NAS and provide a survey on recent works. Then we deep dive into two recent advancements on extending NAS into multiple-objective frameworks: MONAS and DPP-Net. Both MONAS and DPP-Net are capable of optimizing accuracy and other objectives imposed by devices, searching for neural architectures that can be best deployed on a wide spectrum of devices: from embedded systems and mobile devices to workstations. Experimental results are poised to show that architectures found by MONAS and DPP-Net achieves Pareto optimality w.r.t the given objectives for various devices.
Escaping from Collapsing Modes in a Constrained Space
Chang, Chia-Che, Lin, Chieh Hubert, Lee, Che-Rung, Juan, Da-Cheng, Wei, Wei, Chen, Hwann-Tzong
Generative adversarial networks (GANs) often suffer from unpredictable mode-collapsing during training. We study the issue of mode collapse of Boundary Equilibrium Generative Adversarial Network (BEGAN), which is one of the state-of-the-art generative models. Despite its potential of generating high-quality images, we find that BEGAN tends to collapse at some modes after a period of training. We propose a new model, called \emph{BEGAN with a Constrained Space} (BEGAN-CS), which includes a latent-space constraint in the loss function. We show that BEGAN-CS can significantly improve training stability and suppress mode collapse without either increasing the model complexity or degrading the image quality. Further, we visualize the distribution of latent vectors to elucidate the effect of latent-space constraint. The experimental results show that our method has additional advantages of being able to train on small datasets and to generate images similar to a given real image yet with variations of designated attributes on-the-fly.
MONAS: Multi-Objective Neural Architecture Search using Reinforcement Learning
Hsu, Chi-Hung, Chang, Shu-Huan, Juan, Da-Cheng, Pan, Jia-Yu, Chen, Yu-Ting, Wei, Wei, Chang, Shih-Chieh
Recent studies on neural architecture search have shown that automatically designed neural networks perform as good as human-designed architectures. While most existing works on neural architecture search aim at finding architectures that optimize for prediction accuracy. These methods may generate complex architectures consuming excessively high energy consumption, which is not suitable for computing environment with limited power budgets. We propose MONAS, a Multi-Objective Neural Architecture Search with novel reward functions that consider both prediction accuracy and power consumption when exploring neural architectures. MONAS effectively explores the design space and searches for architectures satisfying the given requirements. The experimental results demonstrate that the architectures found by MONAS achieve accuracy comparable to or better than the state-of-the-art models, while having better energy efficiency.
NeuralPower: Predict and Deploy Energy-Efficient Convolutional Neural Networks
Cai, Ermao, Juan, Da-Cheng, Stamoulis, Dimitrios, Marculescu, Diana
"How much energy is consumed for an inference made by a convolutional neural network (CNN)?" With the increased popularity of CNNs deployed on the wide-spectrum of platforms (from mobile devices to workstations), the answer to this question has drawn significant attention. From lengthening battery life of mobile devices to reducing the energy bill of a datacenter, it is important to understand the energy efficiency of CNNs during serving for making an inference, before actually training the model. In this work, we propose NeuralPower: a layer-wise predictive framework based on sparse polynomial regression, for predicting the serving energy consumption of a CNN deployed on any GPU platform. Given the architecture of a CNN, NeuralPower provides an accurate prediction and breakdown for power and runtime across all layers in the whole network, helping machine learners quickly identify the power, runtime, or energy bottlenecks. We also propose the "energy-precision ratio" (EPR) metric to guide machine learners in selecting an energy-efficient CNN architecture that better trades off the energy consumption and prediction accuracy. The experimental results show that the prediction accuracy of the proposed NeuralPower outperforms the best published model to date, yielding an improvement in accuracy of up to 68.5%. We also assess the accuracy of predictions at the network level, by predicting the runtime, power, and energy of state-of-the-art CNN architectures, achieving an average accuracy of 88.24% in runtime, 88.34% in power, and 97.21% in energy. We comprehensively corroborate the effectiveness of NeuralPower as a powerful framework for machine learners by testing it on different GPU platforms and Deep Learning software tools.