Plotting

 Jr., Charles Lee Isbell


Cobot: A Social Reinforcement Learning Agent

Neural Information Processing Systems

We report on the use of reinforcement learning with Cobot, a software agent residing in the well-known online community LambdaMOO. Our initial work on Cobot (Isbell et al.2000) provided him with the ability to collect social statistics and report them to users. Here we describe an application of RL allowing Cobot to take proactive actions in this complex social environment, and adapt behavior from multiple sources of human reward. After 5 months of training, and 3171 reward and punishment events from 254 different LambdaMOO users, Cobot learned nontrivial preferences for a number of users, modifing his behavior based on his current state. Here we describe LambdaMOO and the state and action spaces of Cobot, and report the statistical results of the learning experiment.


Cobot: A Social Reinforcement Learning Agent

Neural Information Processing Systems

We report on the use of reinforcement learning with Cobot, a software agent residing in the well-known online community LambdaMOO. Our initial work on Cobot (Isbell et al.2000) provided him with the ability to collect social statistics and report them to users. Here we describe an application of RL allowing Cobot to take proactive actions in this complex social environment, and adapt behavior from multiple sources of human reward. After 5 months of training, and 3171 reward and punishment events from 254 different LambdaMOO users, Cobot learned nontrivial preferences for a number of users, modifing his behavior based on his current state. Here we describe LambdaMOO and the state and action spaces of Cobot, and report the statistical results of the learning experiment.


The Parallel Problems Server: an Interactive Tool for Large Scale Machine Learning

Neural Information Processing Systems

Imagine that you wish to classify data consisting of tens of thousands of examples residingin a twenty thousand dimensional space. How can one apply standard machine learning algorithms? We describe the Parallel Problems Server(PPServer) and MATLAB*P.


The Parallel Problems Server: an Interactive Tool for Large Scale Machine Learning

Neural Information Processing Systems

Imagine that you wish to classify data consisting of tens of thousands of examples residing in a twenty thousand dimensional space. How can one apply standard machine learning algorithms? We describe the Parallel Problems Server (PPServer) and MATLAB*P. In tandem they allow users of networked computers to work transparently on large data sets from within Matlab. This work is motivated by the desire to bring the many benefits of scientific computing algorithms and computational power to machine learning researchers. We demonstrate the usefulness of the system on a number of tasks. For example, we perform independent components analysis on very large text corpora consisting of tens of thousands of documents, making minimal changes to the original Bell and Sejnowski Matlab source (Bell and Sejnowski, 1995). Applying ML techniques to data previously beyond their reach leads to interesting analyses of both data and algorithms.


Restructuring Sparse High Dimensional Data for Effective Retrieval

Neural Information Processing Systems

The task in text retrieval is to find the subset of a collection of documents relevant to a user's information request, usually expressed as a set of words. Classically, documents and queries are represented as vectors of word counts.


Restructuring Sparse High Dimensional Data for Effective Retrieval

Neural Information Processing Systems

The task in text retrieval is to find the subset of a collection of documents relevant to a user's information request, usually expressed as a set of words. Classically, documents and queries are represented as vectors of word counts. In its simplest form, relevance is defined to be the dot product between a document and a query vector-a measure of the number of common terms. A central difficulty in text retrieval is that the presence or absence of a word is not sufficient to determine relevance to a query. Linear dimensionality reduction has been proposed as a technique for extracting underlying structure from the document collection.


MIMIC: Finding Optima by Estimating Probability Densities

Neural Information Processing Systems

In many optimization problems, the structure of solutions reflects complex relationships between the different input parameters. For example, experience may tell us that certain parameters are closely related and should not be explored independently. Similarly, experience may establish that a subset of parameters must take on particular values. Any search of the cost landscape should take advantage of these relationships. We present MIMIC, a framework in which we analyze the global structure of the optimization landscape. A novel and efficient algorithm for the estimation of this structure is derived. We use knowledge of this structure to guide a randomized search through the solution space and, in turn, to refine our estimate ofthe structure.


MIMIC: Finding Optima by Estimating Probability Densities

Neural Information Processing Systems

In many optimization problems, the structure of solutions reflects complex relationships between the different input parameters. For example, experience may tell us that certain parameters are closely related and should not be explored independently. Similarly, experience mayestablish that a subset of parameters must take on particular values. Any search of the cost landscape should take advantage of these relationships. We present MIMIC, a framework in which we analyze the global structure of the optimization landscape. Anovel and efficient algorithm for the estimation of this structure is derived. We use knowledge of this structure to guide a randomized search through the solution space and, in turn, to refine ourestimate ofthe structure.


MIMIC: Finding Optima by Estimating Probability Densities

Neural Information Processing Systems

In many optimization problems, the structure of solutions reflects complex relationships between the different input parameters. For example, experience may tell us that certain parameters are closely related and should not be explored independently. Similarly, experience may establish that a subset of parameters must take on particular values. Any search of the cost landscape should take advantage of these relationships. We present MIMIC, a framework in which we analyze the global structure of the optimization landscape. A novel and efficient algorithm for the estimation of this structure is derived. We use knowledge of this structure to guide a randomized search through the solution space and, in turn, to refine our estimate ofthe structure.