Not enough data to create a plot.
Try a different view from the menu above.
Joydeep Ghosh
On Single Source Robustness in Deep Fusion Models
Taewan Kim, Joydeep Ghosh
Algorithms that fuse multiple input sources benefit from both complementary and shared information. Shared information may provide robustness against faulty or noisy inputs, which is indispensable for safety-critical applications like self-driving cars. We investigate learning fusion algorithms that are robust against noise added to a single source. We first demonstrate that robustness against single source noise is not guaranteed in a linear fusion model. Motivated by this discovery, two possible approaches are proposed to increase robustness: a carefully designed loss with corresponding training algorithms for deep fusion models, and a simple convolutional fusion layer that has a structural advantage in dealing with noise. Experimental results show that both training algorithms and our fusion layer make a deep fusion-based 3D object detector robust against noise applied to a single source, while preserving the original performance on clean data.
On Single Source Robustness in Deep Fusion Models
Taewan Kim, Joydeep Ghosh
Algorithms that fuse multiple input sources benefit from both complementary and shared information. Shared information may provide robustness against faulty or noisy inputs, which is indispensable for safety-critical applications like self-driving cars. We investigate learning fusion algorithms that are robust against noise added to a single source. We first demonstrate that robustness against single source noise is not guaranteed in a linear fusion model. Motivated by this discovery, two possible approaches are proposed to increase robustness: a carefully designed loss with corresponding training algorithms for deep fusion models, and a simple convolutional fusion layer that has a structural advantage in dealing with noise. Experimental results show that both training algorithms and our fusion layer make a deep fusion-based 3D object detector robust against noise applied to a single source, while preserving the original performance on clean data.
Preference Completion from Partial Rankings
Suriya Gunasekar, Oluwasanmi O. Koyejo, Joydeep Ghosh
We propose a novel and efficient algorithm for the collaborative preference completion problem, which involves jointly estimating individualized rankings for a set of entities over a shared set of items, based on a limited number of observed affinity values. Our approach exploits the observation that while preferences are often recorded as numerical scores, the predictive quantity of interest is the underlying rankings. Thus, attempts to closely match the recorded scores may lead to overfitting and impair generalization performance. Instead, we propose an estimator that directly fits the underlying preference order, combined with nuclear norm constraints to encourage low-rank parameters. Besides (approximate) correctness of the ranking order, the proposed estimator makes no generative assumption on the numerical scores of the observations. One consequence is that the proposed estimator can fit any consistent partial ranking over a subset of the items represented as a directed acyclic graph (DAG), generalizing standard techniques that can only fit preference scores. Despite this generality, for supervision representing total or blockwise total orders, the computational complexity of our algorithm is within a log factor of the standard algorithms for nuclear norm regularization based estimates for matrix completion.