Joulin, Armand
Efficient Large-Scale Multi-Modal Classification
Kiela, Douwe (Facebook AI Research) | Grave, Edouard (Facebook AI Research) | Joulin, Armand (Facebook AI Research) | Mikolov, Tomas (Facebook AI Research)
While the incipient internet was largely text-based, the modern digital world is becoming increasingly multi-modal. Here, we examine multi-modal classification where one modality is discrete, e.g. text, and the other is continuous, e.g. visual representations transferred from a convolutional neural network. In particular, we focus on scenarios where we have to be able to classify large quantities of data quickly. We investigate various methods for performing multi-modal fusion and analyze their trade-offs in terms of classification accuracy and computational efficiency. Our findings indicate that the inclusion of continuous information improves performance over text-only on a range of multi-modal classification tasks, even with simple fusion methods. In addition, we experiment with discretizing the continuous features in order to speed up and simplify the fusion process even further. Our results show that fusion with discretized features outperforms text-only classification, at a fraction of the computational cost of full multi-modal fusion, with the additional benefit of improved interpretability.
Unbounded cache model for online language modeling with open vocabulary
Grave, Edouard, Cisse, Moustapha M., Joulin, Armand
Recently, continuous cache models were proposed as extensions to recurrent neural network language models, to adapt their predictions to local changes in the data distribution. These models only capture the local context, of up to a few thousands tokens. In this paper, we propose an extension of continuous cache models, which can scale to larger contexts. In particular, we use a large scale non-parametric memory component that stores all the hidden activations seen in the past. We leverage recent advances in approximate nearest neighbor search and quantization algorithms to store millions of representations while searching them efficiently. We conduct extensive experiments showing that our approach significantly improves the perplexity of pre-trained language models on new distributions, and can scale efficiently to much larger contexts than previously proposed local cache models.
Fast Linear Model for Knowledge Graph Embeddings
Joulin, Armand, Grave, Edouard, Bojanowski, Piotr, Nickel, Maximilian, Mikolov, Tomas
This paper shows that a simple baseline based on a Bag-of-Words (BoW) representation learns surprisingly good knowledge graph embeddings. By casting knowledge base completion and question answering as supervised classification problems, we observe that modeling co-occurences of entities and relations leads to state-of-the-art performance with a training time of a few minutes using the open sourced library fastText.
Optimizing the Latent Space of Generative Networks
Bojanowski, Piotr, Joulin, Armand, Lopez-Paz, David, Szlam, Arthur
Generative Adversarial Networks (GANs) have been shown to be able to sample impressively realistic images. GAN training consists of a saddle point optimization problem that can be thought of as an adversarial game between a generator which produces the images, and a discriminator, which judges if the images are real. Both the generator and the discriminator are commonly parametrized as deep convolutional neural networks. The goal of this paper is to disentangle the contribution of the optimization procedure and the network parametrization to the success of GANs. To this end we introduce and study Generative Latent Optimization (GLO), a framework to train a generator without the need to learn a discriminator, thus avoiding challenging adversarial optimization problems. We show experimentally that GLO enjoys many of the desirable properties of GANs: learning from large data, synthesizing visually-appealing samples, interpolating meaningfully between samples, and performing linear arithmetic with noise vectors.
Unsupervised Learning by Predicting Noise
Bojanowski, Piotr, Joulin, Armand
Convolutional neural networks provide visual features that perform remarkably well in many computer vision applications. However, training these networks requires significant amounts of supervision. This paper introduces a generic framework to train deep networks, end-to-end, with no supervision. We propose to fix a set of target representations, called Noise As Targets (NAT), and to constrain the deep features to align to them. This domain agnostic approach avoids the standard unsupervised learning issues of trivial solutions and collapsing of features. Thanks to a stochastic batch reassignment strategy and a separable square loss function, it scales to millions of images. The proposed approach produces representations that perform on par with state-of-the-art unsupervised methods on ImageNet and Pascal VOC.
Variable Computation in Recurrent Neural Networks
Jernite, Yacine, Grave, Edouard, Joulin, Armand, Mikolov, Tomas
Recurrent neural networks (RNNs) have been used extensively and with increasing success to model various types of sequential data. Much of this progress has been achieved through devising recurrent units and architectures with the flexibility to capture complex statistics in the data, such as long range dependency or localized attention phenomena. However, while many sequential data (such as video, speech or language) can have highly variable information flow, most recurrent models still consume input features at a constant rate and perform a constant number of computations per time step, which can be detrimental to both speed and model capacity. In this paper, we explore a modification to existing recurrent units which allows them to learn to vary the amount of computation they perform at each step, without prior knowledge of the sequence's time structure. We show experimentally that not only do our models require fewer operations, they also lead to better performance overall on evaluation tasks.
Locally-Optimized Inter-Subject Alignment of Functional Cortical Regions
Iordan, Marius Cătălin, Joulin, Armand, Beck, Diane M., Fei-Fei, Li
Inter-subject registration of cortical areas is necessary in functional imaging (fMRI) studies for making inferences about equivalent brain function across a population. However, many high-level visual brain areas are defined as peaks of functional contrasts whose cortical position is highly variable. As such, most alignment methods fail to accurately map functional regions of interest (ROIs) across participants. To address this problem, we propose a locally optimized registration method that directly predicts the location of a seed ROI on a separate target cortical sheet by maximizing the functional correlation between their time courses, while simultaneously allowing for non-smooth local deformations in region topology. Our method outperforms the two most commonly used alternatives (anatomical landmark-based AFNI alignment and cortical convexity-based FreeSurfer alignment) in overlap between predicted region and functionally-defined LOC. Furthermore, the maps obtained using our method are more consistent across subjects than both baseline measures. Critically, our method represents an important step forward towards predicting brain regions without explicit localizer scans and deciphering the poorly understood relationship between the location of functional regions, their anatomical extent, and the consistency of computations those regions perform across people.
A Roadmap towards Machine Intelligence
Mikolov, Tomas, Joulin, Armand, Baroni, Marco
The development of intelligent machines is one of the biggest unsolved challenges in computer science. In this paper, we propose some fundamental properties these machines should have, focusing in particular on communication and learning. We discuss a simple environment that could be used to incrementally teach a machine the basics of natural-language-based communication, as a prerequisite to more complex interaction with human users. We also present some conjectures on the sort of algorithms the machine should support in order to profitably learn from the environment.
Towards AI-Complete Question Answering: A Set of Prerequisite Toy Tasks
Weston, Jason, Bordes, Antoine, Chopra, Sumit, Rush, Alexander M., van Merriënboer, Bart, Joulin, Armand, Mikolov, Tomas
One long-term goal of machine learning research is to produce methods that are applicable to reasoning and natural language, in particular building an intelligent dialogue agent. To measure progress towards that goal, we argue for the usefulness of a set of proxy tasks that evaluate reading comprehension via question answering. Our tasks measure understanding in several ways: whether a system is able to answer questions via chaining facts, simple induction, deduction and many more. The tasks are designed to be prerequisites for any system that aims to be capable of conversing with a human. We believe many existing learning systems can currently not solve them, and hence our aim is to classify these tasks into skill sets, so that researchers can identify (and then rectify) the failings of their systems. We also extend and improve the recently introduced Memory Networks model, and show it is able to solve some, but not all, of the tasks.
Inferring Algorithmic Patterns with Stack-Augmented Recurrent Nets
Joulin, Armand, Mikolov, Tomas
Despite the recent achievements in machine learning, we are still very far from achieving real artificial intelligence. In this paper, we discuss the limitations of standard deep learning approaches and show that some of these limitations can be overcome by learning how to grow the complexity of a model in a structured way. Specifically, we study the simplest sequence prediction problems that are beyond the scope of what is learnable with standard recurrent networks, algorithmically generated sequences which can only be learned by models which have the capacity to count and to memorize sequences. We show that some basic algorithms can be learned from sequential data using a recurrent network associated with a trainable memory.