Not enough data to create a plot.
Try a different view from the menu above.
Joshi, Abhishek
RoboCasa: Large-Scale Simulation of Everyday Tasks for Generalist Robots
Nasiriany, Soroush, Maddukuri, Abhiram, Zhang, Lance, Parikh, Adeet, Lo, Aaron, Joshi, Abhishek, Mandlekar, Ajay, Zhu, Yuke
Recent advancements in Artificial Intelligence (AI) have largely been propelled by scaling. In Robotics, scaling is hindered by the lack of access to massive robot datasets. We advocate using realistic physical simulation as a means to scale environments, tasks, and datasets for robot learning methods. We present RoboCasa, a large-scale simulation framework for training generalist robots in everyday environments. RoboCasa features realistic and diverse scenes focusing on kitchen environments. We provide thousands of 3D assets across over 150 object categories and dozens of interactable furniture and appliances. We enrich the realism and diversity of our simulation with generative AI tools, such as object assets from text-to-3D models and environment textures from text-to-image models. We design a set of 100 tasks for systematic evaluation, including composite tasks generated by the guidance of large language models. To facilitate learning, we provide high-quality human demonstrations and integrate automated trajectory generation methods to substantially enlarge our datasets with minimal human burden. Our experiments show a clear scaling trend in using synthetically generated robot data for large-scale imitation learning and show great promise in harnessing simulation data in real-world tasks. Videos and open-source code are available at https://robocasa.ai/
VIOLA: Imitation Learning for Vision-Based Manipulation with Object Proposal Priors
Zhu, Yifeng, Joshi, Abhishek, Stone, Peter, Zhu, Yuke
We introduce VIOLA, an object-centric imitation learning approach to learning closed-loop visuomotor policies for robot manipulation. Our approach constructs object-centric representations based on general object proposals from a pre-trained vision model. VIOLA uses a transformer-based policy to reason over these representations and attend to the task-relevant visual factors for action prediction. Such object-based structural priors improve deep imitation learning algorithm's robustness against object variations and environmental perturbations. We quantitatively evaluate VIOLA in simulation and on real robots. VIOLA outperforms the state-of-the-art imitation learning methods by $45.8\%$ in success rate. It has also been deployed successfully on a physical robot to solve challenging long-horizon tasks, such as dining table arrangement and coffee making. More videos and model details can be found in supplementary material and the project website: https://ut-austin-rpl.github.io/VIOLA .
Enhancing Classification with Hierarchical Scalable Query on Fusion Transformer
Sahoo, Sudeep Kumar, Chalasani, Sathish, Joshi, Abhishek, Iyer, Kiran Nanjunda
Real-world vision based applications require fine-grained classification for various area of interest like e-commerce, mobile applications, warehouse management, etc. where reducing the severity of mistakes and improving the classification accuracy is of utmost importance. This paper proposes a method to boost fine-grained classification through a hierarchical approach via learnable independent query embeddings. This is achieved through a classification network that uses coarse class predictions to improve the fine class accuracy in a stage-wise sequential manner. We exploit the idea of hierarchy to learn query embeddings that are scalable across all levels, thus making this a relevant approach even for extreme classification where we have a large number of classes. The query is initialized with a weighted Eigen image calculated from training samples to best represent and capture the variance of the object. We introduce transformer blocks to fuse intermediate layers at which query attention happens to enhance the spatial representation of feature maps at different scales. This multi-scale fusion helps improve the accuracy of small-size objects. We propose a two-fold approach for the unique representation of learnable queries. First, at each hierarchical level, we leverage cluster based loss that ensures maximum separation between inter-class query embeddings and helps learn a better (query) representation in higher dimensional spaces. Second, we fuse coarse level queries with finer level queries weighted by a learned scale factor. We additionally introduce a novel block called Cross Attention on Multi-level queries with Prior (CAMP) Block that helps reduce error propagation from coarse level to finer level, which is a common problem in all hierarchical classifiers. Our method is able to outperform the existing methods with an improvement of ~11% at the fine-grained classification.