Goto

Collaborating Authors

 Josh Tenenbaum


Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

Neural Information Processing Systems

We study the problem of 3D object generation. We propose a novel framework, namely 3D Generative Adversarial Network (3D-GAN), which generates 3D objects from a probabilistic space by leveraging recent advances in volumetric convolutional networks and generative adversarial nets. The benefits of our model are three-fold: first, the use of an adversarial criterion, instead of traditional heuristic criteria, enables the generator to capture object structure implicitly and to synthesize high-quality 3D objects; second, the generator establishes a mapping from a low-dimensional probabilistic space to the space of 3D objects, so that we can sample objects without a reference image or CAD models, and explore the 3D object manifold; third, the adversarial discriminator provides a powerful 3D shape descriptor which, learned without supervision, has wide applications in 3D object recognition. Experiments demonstrate that our method generates high-quality 3D objects, and our unsupervisedly learned features achieve impressive performance on 3D object recognition, comparable with those of supervised learning methods.


Learning to Exploit Stability for 3D Scene Parsing

Neural Information Processing Systems

Human scene understanding uses a variety of visual and non-visual cues to perform inference on object types, poses, and relations. Physics is a rich and universal cue that we exploit to enhance scene understanding. In this paper, we integrate the physical cue of stability into the learning process by looping in a physics engine into bottom-up recognition models, and apply it to the problem of 3D scene parsing. We first show that applying physics supervision to an existing scene understanding model increases performance, produces more stable predictions, and allows training to an equivalent performance level with fewer annotated training examples. We then present a novel architecture for 3D scene parsing named Prim R-CNN, learning to predict bounding boxes as well as their 3D size, translation, and rotation. With physics supervision, Prim R-CNN outperforms existing scene understanding approaches on this problem. Finally, we show that finetuning with physics supervision on unlabeled real images improves real domain transfer of models training on synthetic data.


Shape and Material from Sound

Neural Information Processing Systems

Hearing an object falling onto the ground, humans can recover rich information including its rough shape, material, and falling height. In this paper, we build machines to approximate such competency. We first mimic human knowledge of the physical world by building an efficient, physics-based simulation engine. Then, we present an analysis-by-synthesis approach to infer properties of the falling object. We further accelerate the process by learning a mapping from a sound wave to object properties, and using the predicted values to initialize the inference. This mapping can be viewed as an approximation of human commonsense learned from past experience. Our model performs well on both synthetic audio clips and real recordings without requiring any annotated data. We conduct behavior studies to compare human responses with ours on estimating object shape, material, and falling height from sound. Our model achieves near-human performance.


Self-Supervised Intrinsic Image Decomposition

Neural Information Processing Systems

Intrinsic decomposition from a single image is a highly challenging task, due to its inherent ambiguity and the scarcity of training data. In contrast to traditional fully supervised learning approaches, in this paper we propose learning intrinsic image decomposition by explaining the input image. Our model, the Rendered Intrinsics Network (RIN), joins together an image decomposition pipeline, which predicts reflectance, shape, and lighting conditions given a single image, with a recombination function, a learned shading model used to recompose the original input based off of intrinsic image predictions. Our network can then use unsupervised reconstruction error as an additional signal to improve its intermediate representations. This allows large-scale unlabeled data to be useful during training, and also enables transferring learned knowledge to images of unseen object categories, lighting conditions, and shapes. Extensive experiments demonstrate that our method performs well on both intrinsic image decomposition and knowledge transfer.


MarrNet: 3D Shape Reconstruction via 2.5D Sketches

Neural Information Processing Systems

This introduces challenges for learning-based approaches, as 3D object annotations are scarce in real images. Previous work chose to train on synthetic data with ground truth 3D information, but suffered from domain adaptation when tested on real data. In this work, we propose MarrNet, an end-to-end trainable model that sequentially estimates 2.5D sketches and 3D object shape. Our disentangled, two-step formulation has three advantages. First, compared to full 3D shape, 2.5D sketches are much easier to be recovered from a 2D image; models that recover 2.5D sketches are also more likely to transfer from synthetic to real data. Second, for 3D reconstruction from 2.5D sketches, systems can learn purely from synthetic data. This is because we can easily render realistic 2.5D sketches without modeling object appearance variations in real images, including lighting, texture, etc.


Learning to See Physics via Visual De-animation

Neural Information Processing Systems

We introduce a paradigm for understanding physical scenes without human annotations. At the core of our system is a physical world representation that is first recovered by a perception module and then utilized by physics and graphics engines. During training, the perception module and the generative models learn by visual de-animation -- interpreting and reconstructing the visual information stream. During testing, the system first recovers the physical world state, and then uses the generative models for reasoning and future prediction. Even more so than forward simulation, inverting a physics or graphics engine is a computationally hard problem; we overcome this challenge by using a convolutional inversion network. Our system quickly recognizes the physical world state from appearance and motion cues, and has the flexibility to incorporate both differentiable and non-differentiable physics and graphics engines. We evaluate our system on both synthetic and real datasets involving multiple physical scenes, and demonstrate that our system performs well on both physical state estimation and reasoning problems. We further show that the knowledge learned on the synthetic dataset generalizes to constrained real images.


Visual Object Networks: Image Generation with Disentangled 3D Representations

Neural Information Processing Systems

Recent progress in deep generative models has led to tremendous breakthroughs in image generation. However, while existing models can synthesize photorealistic images, they lack an understanding of our underlying 3D world. We present a new generative model, Visual Object Networks (VON), synthesizing natural images of objects with a disentangled 3D representation. Inspired by classic graphics rendering pipelines, we unravel our image formation process into three conditionally independent factors--shape, viewpoint, and texture--and present an end-to-end adversarial learning framework that jointly models 3D shapes and 2D images. Our model first learns to synthesize 3D shapes that are indistinguishable from real shapes. It then renders the object's 2.5D sketches (i.e., silhouette and depth map) from its shape under a sampled viewpoint. Finally, it learns to add realistic texture to these 2.5D sketches to generate natural images. The VON not only generates images that are more realistic than state-of-the-art 2D image synthesis methods, but also enables many 3D operations such as changing the viewpoint of a generated image, editing of shape and texture, linear interpolation in texture and shape space, and transferring appearance across different objects and viewpoints.


End-to-End Differentiable Physics for Learning and Control

Neural Information Processing Systems

We present a differentiable physics engine that can be integrated as a module in deep neural networks for end-to-end learning. As a result, structured physics knowledge can be embedded into larger systems, allowing them, for example, to match observations by performing precise simulations, while achieves high sample efficiency. Specifically, in this paper we demonstrate how to perform backpropagation analytically through a physical simulator defined via a linear complementarity problem. Unlike traditional finite difference methods, such gradients can be computed analytically, which allows for greater flexibility of the engine. Through experiments in diverse domains, we highlight the system's ability to learn physical parameters from data, efficiently match and simulate observed visual behavior, and readily enable control via gradient-based planning methods. Code for the engine and experiments is included with the paper.



Learning to Infer Graphics Programs from Hand-Drawn Images

Neural Information Processing Systems

The model combines techniques from deep learning and program synthesis. We learn a convolutional neural network that proposes plausible drawing primitives that explain an image. These drawing primitives are a specification (spec) of what the graphics program needs to draw. We learn a model that uses program synthesis techniques to recover a graphics program from that spec. These programs have constructs like variable bindings, iterative loops, or simple kinds of conditionals. With a graphics program in hand, we can correct errors made by the deep network and extrapolate drawings.