Joo, Jungseock
Cultural Diffusion and Trends in Facebook Photographs
You, Quanzeng (University of Rochester) | García-García, Darío (Facebook) | Paluri, Mahohar (Facebook) | Luo, Jiebo (University of Rochester) | Joo, Jungseock (University of California, Los Angeles)
Online social media is a social vehicle in which people share various moments of their lives with their friends, such as playing sports, cooking dinner or just taking a selfie for fun, via visual means, that is, photographs. Our study takes a closer look at the popular visual concepts illustrating various cultural lifestyles from aggregated, de-identified photographs. We perform analysis both at macroscopic and microscopic levels, to gain novel insights about global and local visual trends as well as the dynamics of interpersonal cultural exchange and diffusion among Facebook friends. We processed images by automatically classifying the visual content by a convolutional neural network (CNN). Through various statistical tests, we find that socially tied individuals more likely post images showing similar cultural lifestyles. To further identify the main cause of the observed social correlation, we use the Shuffle test and the Preference-based Matched Estimation (PME) test to distinguish the effects of influence and homophily. The results indicate that the visual content of each user's photographs are temporally, although not necessarily causally, correlated with the photographs of their friends, which may suggest the effect of influence. Our paper demonstrates that Facebook photographs exhibit diverse cultural lifestyles and preferences and that the social interaction mediated through the visual channel in social media can be an effective mechanism for cultural diffusion.
Fashion Conversation Data on Instagram
Ha, Yu-I, Kwon, Sejeong, Cha, Meeyoung, Joo, Jungseock
The fashion industry is establishing its presence on a number of visual-centric social media like Instagram. This creates an interesting clash as fashion brands that have traditionally practiced highly creative and editorialized image marketing now have to engage with people on the platform that epitomizes impromptu, realtime conversation. What kinds of fashion images do brands and individuals share and what are the types of visual features that attract likes and comments? In this research, we take both quantitative and qualitative approaches to answer these questions. We analyze visual features of fashion posts first via manual tagging and then via training on convolutional neural networks. The classified images were examined across four types of fashion brands: mega couture, small couture, designers, and high street. We find that while product-only images make up the majority of fashion conversation in terms of volume, body snaps and face images that portray fashion items more naturally tend to receive a larger number of likes and comments by the audience. Our findings bring insights into building an automated tool for classifying or generating influential fashion information. We make our novel dataset of {24,752} labeled images on fashion conversations, containing visual and textual cues, available for the research community.