Well File:
- Well Planning ( results)
- Shallow Hazard Analysis ( results)
- Well Plat ( results)
- Wellbore Schematic ( results)
- Directional Survey ( results)
- Fluid Sample ( results)
- Log ( results)
- Density ( results)
- Gamma Ray ( results)
- Mud ( results)
- Resistivity ( results)
- Report ( results)
- Daily Report ( results)
- End of Well Report ( results)
- Well Completion Report ( results)
- Rock Sample ( results)
Jonghwan Mun
Regularizing Deep Neural Networks by Noise: Its Interpretation and Optimization
Hyeonwoo Noh, Tackgeun You, Jonghwan Mun, Bohyung Han
Overfitting is one of the most critical challenges in deep neural networks, and there are various types of regularization methods to improve generalization performance. Injecting noises to hidden units during training, e.g., dropout, is known as a successful regularizer, but it is still not clear enough why such training techniques work well in practice and how we can maximize their benefit in the presence of two conflicting objectives--optimizing to true data distribution and preventing overfitting by regularization. This paper addresses the above issues by 1) interpreting that the conventional training methods with regularization by noise injection optimize the lower bound of the true objective and 2) proposing a technique to achieve a tighter lower bound using multiple noise samples per training example in a stochastic gradient descent iteration. We demonstrate the effectiveness of our idea in several computer vision applications.
Learning to Specialize with Knowledge Distillation for Visual Question Answering
Jonghwan Mun, Kimin Lee, Jinwoo Shin, Bohyung Han
Visual Question Answering (VQA) is a notoriously challenging problem because it involves various heterogeneous tasks defined by questions within a unified framework. Learning specialized models for individual types of tasks is intuitively attracting but surprisingly difficult; it is not straightforward to outperform naïve independent ensemble approach. We present a principled algorithm to learn specialized models with knowledge distillation under a multiple choice learning (MCL) framework, where training examples are assigned dynamically to a subset of models for updating network parameters. The assigned and non-assigned models are learned to predict ground-truth answers and imitate their own base models before specialization, respectively. Our approach alleviates the limitation of data deficiency in existing MCL frameworks, and allows each model to learn its own specialized expertise without forgetting general knowledge. The proposed framework is model-agnostic and applicable to any tasks other than VQA, e.g., image classification with a large number of labels but few per-class examples, which is known to be difficult under existing MCL schemes. Our experimental results indeed demonstrate that our method outperforms other baselines for VQA and image classification.
Regularizing Deep Neural Networks by Noise: Its Interpretation and Optimization
Hyeonwoo Noh, Tackgeun You, Jonghwan Mun, Bohyung Han
Overfitting is one of the most critical challenges in deep neural networks, and there are various types of regularization methods to improve generalization performance. Injecting noises to hidden units during training, e.g., dropout, is known as a successful regularizer, but it is still not clear enough why such training techniques work well in practice and how we can maximize their benefit in the presence of two conflicting objectives--optimizing to true data distribution and preventing overfitting by regularization. This paper addresses the above issues by 1) interpreting that the conventional training methods with regularization by noise injection optimize the lower bound of the true objective and 2) proposing a technique to achieve a tighter lower bound using multiple noise samples per training example in a stochastic gradient descent iteration. We demonstrate the effectiveness of our idea in several computer vision applications.