Plotting

 Jonathan W. Pillow


Power-law efficient neural codes provide general link between perceptual bias and discriminability

Neural Information Processing Systems

Recent work in theoretical neuroscience has shown that efficient neural codes, which allocate neural resources to maximize the mutual information between stimuli and neural responses, give rise to a lawful relationship between perceptual bias and discriminability in psychophysical measurements (Wei & Stocker 2017, [1]). Here we generalize these results to show that the same law arises under a much larger family of optimal neural codes, which we call power-law efficient codes. These codes provide a unifying framework for understanding the relationship between perceptual bias and discriminability, and how it depends on the allocation of neural resources. Specifically, we show that the same lawful relationship between bias and discriminability arises whenever Fisher information is allocated proportional to any power of the prior distribution.


Scaling the Poisson GLM to massive neural datasets through polynomial approximations

Neural Information Processing Systems

Recent advances in recording technologies have allowed neuroscientists to record simultaneous spiking activity from hundreds to thousands of neurons in multiple brain regions. Such large-scale recordings pose a major challenge to existing statistical methods for neural data analysis. Here we develop highly scalable approximate inference methods for Poisson generalized linear models (GLMs) that require only a single pass over the data. Our approach relies on a recently proposed method for obtaining approximate sufficient statistics for GLMs using polynomial approximations [7], which we adapt to the Poisson GLM setting. We focus on inference using quadratic approximations to nonlinear terms in the Poisson GLM log-likelihood with Gaussian priors, for which we derive closed-form solutions to the approximate maximum likelihood and MAP estimates, posterior distribution, and marginal likelihood. We introduce an adaptive procedure to select the polynomial approximation interval and show that the resulting method allows for efficient and accurate inference and regularization of high-dimensional parameters. We use the quadratic estimator to fit a fully-coupled Poisson GLM to spike train data recorded from 831 neurons across five regions of the mouse brain for a duration of 41 minutes, binned at 1 ms resolution. Across all neurons, this model is fit to over 2 billion spike count bins and identifies fine-timescale statistical dependencies between neurons within and across cortical and subcortical areas.


Learning a latent manifold of odor representations from neural responses in piriform cortex

Neural Information Processing Systems

A major difficulty in studying the neural mechanisms underlying olfactory perception is the lack of obvious structure in the relationship between odorants and the neural activity patterns they elicit. Here we use odor-evoked responses in piriform cortex to identify a latent manifold specifying latent distance relationships between olfactory stimuli. Our approach is based on the Gaussian process latent variable model, and seeks to map odorants to points in a low-dimensional embedding space, where distances between points in the embedding space relate to the similarity of population responses they elicit. The model is specified by an explicit continuous mapping from a latent embedding space to the space of high-dimensional neural population firing rates via nonlinear tuning curves, each parametrized by a Gaussian process. Population responses are then generated by the addition of correlated, odor-dependent Gaussian noise. We fit this model to large-scale calcium fluorescence imaging measurements of population activity in layers 2 and 3 of mouse piriform cortex following the presentation of a diverse set of odorants. The model identifies a low-dimensional embedding of each odor, and a smooth tuning curve over the latent embedding space that accurately captures each neuron's response to different odorants.


Optimal prior-dependent neural population codes under shared input noise

Neural Information Processing Systems

The brain uses population codes to form distributed, noise-tolerant representations of sensory and motor variables. Recent work has examined the theoretical optimality of such codes in order to gain insight into the principles governing population codes found in the brain. However, the majority of the population coding literature considers either conditionally independent neurons or neurons with noise governed by a stimulus-independent covariance matrix. Here we analyze population coding under a simple alternative model in which latent "input noise" corrupts the stimulus before it is encoded by the population. This provides a convenient and tractable description for irreducible uncertainty that cannot be overcome by adding neurons, and induces stimulus-dependent correlations that mimic certain aspects of the correlations observed in real populations. We examine prior-dependent, Bayesian optimal coding in such populations using exact analyses of cases in which the posterior is approximately Gaussian. These analyses extend previous results on independent Poisson population codes and yield an analytic expression for squared loss and a tight upper bound for mutual information. We show that, for homogeneous populations that tile the input domain, optimal tuning curve width depends on the prior, the loss function, the resource constraint, and the amount of input noise. This framework provides a practical testbed for examining issues of optimality, noise, correlation, and coding fidelity in realistic neural populations.


Gaussian process based nonlinear latent structure discovery in multivariate spike train data

Neural Information Processing Systems

A large body of recent work focuses on methods for extracting low-dimensional latent structure from multi-neuron spike train data. Most such methods employ either linear latent dynamics or linear mappings from latent space to log spike rates. Here we propose a doubly nonlinear latent variable model that can identify low-dimensional structure underlying apparently high-dimensional spike train data. We introduce the Poisson Gaussian-Process Latent Variable Model (P-GPLVM), which consists of Poisson spiking observations and two underlying Gaussian processes--one governing a temporal latent variable and another governing a set of nonlinear tuning curves. The use of nonlinear tuning curves enables discovery of low-dimensional latent structure even when spike responses exhibit high linear dimensionality (e.g., as found in hippocampal place cell codes). To learn the model from data, we introduce the decoupled Laplace approximation, a fast approximate inference method that allows us to efficiently optimize the latent path while marginalizing over tuning curves. We show that this method outperforms previous Laplace-approximation-based inference methods in both the speed of convergence and accuracy. We apply the model to spike trains recorded from hippocampal place cells and show that it compares favorably to a variety of previous methods for latent structure discovery, including variational auto-encoder (VAE) based methods that parametrize the nonlinear mapping from latent space to spike rates with a deep neural network.