Plotting

 Joachims, Thorsten


Prompt Optimization with Logged Bandit Data

arXiv.org Machine Learning

We study how to use naturally available user feedback, such as clicks, to optimize large language model (LLM) pipelines for generating personalized sentences using prompts. Naive approaches, which estimate the policy gradient in the prompt space, suffer either from variance caused by the large action space of prompts or bias caused by inaccurate reward predictions. To circumvent these challenges, we propose a novel kernel-based off-policy gradient method, which estimates the policy gradient by leveraging similarity among generated sentences, substantially reducing variance while suppressing the bias. Empirical results on our newly established suite of benchmarks demonstrate the effectiveness of the proposed approach in generating personalized descriptions for movie recommendations, particularly when the number of candidate prompts is large.


Poor Alignment and Steerability of Large Language Models: Evidence from College Admission Essays

arXiv.org Artificial Intelligence

People are increasingly using technologies equipped with large language models (LLM) to write texts for formal communication, which raises two important questions at the intersection of technology and society: Who do LLMs write like (model alignment); and can LLMs be prompted to change who they write like (model steerability). We investigate these questions in the high-stakes context of undergraduate admissions at a selective university by comparing lexical and sentence variation between essays written by 30,000 applicants to two types of LLM-generated essays: one prompted with only the essay question used by the human applicants; and another with additional demographic information about each applicant. We consistently find that both types of LLM-generated essays are linguistically distinct from human-authored essays, regardless of the specific model and analytical approach. Further, prompting a specific sociodemographic identity is remarkably ineffective in aligning the model with the linguistic patterns observed in human writing from this identity group. This holds along the key dimensions of sex, race, first-generation status, and geographic location. The demographically prompted and unprompted synthetic texts were also more similar to each other than to the human text, meaning that prompting did not alleviate homogenization. These issues of model alignment and steerability in current LLMs raise concerns about the use of LLMs in high-stakes contexts.


MultiScale Contextual Bandits for Long Term Objectives

arXiv.org Artificial Intelligence

The feedback that AI systems (e.g., recommender systems, chatbots) collect from user interactions is a crucial source of training data. While short-term feedback (e.g., clicks, engagement) is widely used for training, there is ample evidence that optimizing short-term feedback does not necessarily achieve the desired long-term objectives. Unfortunately, directly optimizing for long-term objectives is challenging, and we identify the disconnect in the timescales of short-term interventions (e.g., rankings) and the long-term feedback (e.g., user retention) as one of the key obstacles. To overcome this disconnect, we introduce the framework of MultiScale Policy Learning to contextually reconcile that AI systems need to act and optimize feedback at multiple interdependent timescales. For any two levels, our formulation selects the shorter-term objective at the next lower scale to optimize the longer-term objective at the next higher scale. As a result, the policies at all levels effectively optimize for the long-term. We instantiate the framework with MultiScale Off-Policy Bandit Learning (MSBL) and demonstrate its effectiveness on three tasks relating to recommender systems and text generation.


Reviewer2: Optimizing Review Generation Through Prompt Generation

arXiv.org Artificial Intelligence

Recent developments in LLMs offer new opportunities for assisting authors in improving their work. In this paper, we envision a use case where authors can receive LLM-generated reviews that uncover weak points in the current draft. While initial methods for automated review generation already exist, these methods tend to produce reviews that lack detail, and they do not cover the range of opinions that human reviewers produce. To address this shortcoming, we propose an efficient two-stage review generation framework called Reviewer2. Unlike prior work, this approach explicitly models the distribution of possible aspects that the review may address. We show that this leads to more detailed reviews that better cover the range of aspects that human reviewers identify in the draft. As part of the research, we generate a large-scale review dataset of 27k papers and 99k reviews that we annotate with aspect prompts, which we make available as a resource for future research.


End-to-end Training for Recommendation with Language-based User Profiles

arXiv.org Artificial Intelligence

Many online platforms maintain user profiles for personalization. Unfortunately, these profiles are typically not interpretable or easily modifiable by the user. To remedy this shortcoming, we explore natural language-based user profiles, as they promise enhanced transparency and scrutability of recommender systems. While existing work has shown that language-based profiles from standard LLMs can be effective, such generalist LLMs are unlikely to be optimal for this task. In this paper, we introduce LangPTune, the first end-to-end learning method for training LLMs to produce language-based user profiles that optimize recommendation effectiveness. Through comprehensive evaluations of LangPTune across various training configurations and benchmarks, we demonstrate that our approach significantly outperforms existing profile-based methods. In addition, it approaches performance levels comparable to state-of-the-art, less transparent recommender systems, providing a robust and interpretable alternative to conventional systems. Finally, we validate the relative interpretability of these language-based user profiles through user studies involving crowdworkers and GPT-4-based evaluations. Implementation of LangPTune can be found at https://github.com/ZhaolinGao/LangPTune.


REBEL: Reinforcement Learning via Regressing Relative Rewards

arXiv.org Artificial Intelligence

While originally developed for continuous control problems, Proximal Policy Optimization (PPO) has emerged as the work-horse of a variety of reinforcement learning (RL) applications, including the fine-tuning of generative models. Unfortunately, PPO requires multiple heuristics to enable stable convergence (e.g. value networks, clipping), and is notorious for its sensitivity to the precise implementation of these components. In response, we take a step back and ask what a minimalist RL algorithm for the era of generative models would look like. We propose REBEL, an algorithm that cleanly reduces the problem of policy optimization to regressing the relative reward between two completions to a prompt in terms of the policy, enabling strikingly lightweight implementation. In theory, we prove that fundamental RL algorithms like Natural Policy Gradient can be seen as variants of REBEL, which allows us to match the strongest known theoretical guarantees in terms of convergence and sample complexity in the RL literature. REBEL can also cleanly incorporate offline data and be extended to handle the intransitive preferences we frequently see in practice. Empirically, we find that REBEL provides a unified approach to language modeling and image generation with stronger or similar performance as PPO and DPO, all while being simpler to implement and more computationally efficient than PPO. When fine-tuning Llama-3-8B-Instruct, REBEL achieves strong performance in AlpacaEval 2.0, MT-Bench, and Open LLM Leaderboard.


Language-Based User Profiles for Recommendation

arXiv.org Artificial Intelligence

Most conventional recommendation methods (e.g., matrix factorization) represent user profiles as high-dimensional vectors. Unfortunately, these vectors lack interpretability and steerability, and often perform poorly in cold-start settings. To address these shortcomings, we explore the use of user profiles that are represented as human-readable text. We propose the Language-based Factorization Model (LFM), which is essentially an encoder/decoder model where both the encoder and the decoder are large language models (LLMs). The encoder LLM generates a compact natural-language profile of the user's interests from the user's rating history. The decoder LLM uses this summary profile to complete predictive downstream tasks. We evaluate our LFM approach on the MovieLens dataset, comparing it against matrix factorization and an LLM model that directly predicts from the user's rating history. In cold-start settings, we find that our method can have higher accuracy than matrix factorization. Furthermore, we find that generating a compact and human-readable summary often performs comparably with or better than direct LLM prediction, while enjoying better interpretability and shorter model input length. Our results motivate a number of future research directions and potential improvements.


POTEC: Off-Policy Learning for Large Action Spaces via Two-Stage Policy Decomposition

arXiv.org Artificial Intelligence

We study off-policy learning (OPL) of contextual bandit policies in large discrete action spaces where existing methods -- most of which rely crucially on reward-regression models or importance-weighted policy gradients -- fail due to excessive bias or variance. To overcome these issues in OPL, we propose a novel two-stage algorithm, called Policy Optimization via Two-Stage Policy Decomposition (POTEC). It leverages clustering in the action space and learns two different policies via policy- and regression-based approaches, respectively. In particular, we derive a novel low-variance gradient estimator that enables to learn a first-stage policy for cluster selection efficiently via a policy-based approach. To select a specific action within the cluster sampled by the first-stage policy, POTEC uses a second-stage policy derived from a regression-based approach within each cluster. We show that a local correctness condition, which only requires that the regression model preserves the relative expected reward differences of the actions within each cluster, ensures that our policy-gradient estimator is unbiased and the second-stage policy is optimal. We also show that POTEC provides a strict generalization of policy- and regression-based approaches and their associated assumptions. Comprehensive experiments demonstrate that POTEC provides substantial improvements in OPL effectiveness particularly in large and structured action spaces.


GPT as a Baseline for Recommendation Explanation Texts

arXiv.org Artificial Intelligence

In this work, we establish a baseline potential for how modern model-generated text explanations of movie recommendations may help users, and explore what different components of these text explanations that users like or dislike, especially in contrast to existing human movie reviews. We found that participants gave no significantly different rankings between movies, nor did they give significantly different individual quality scores to reviews of movies that they had never seen before. However, participants did mark reviews as significantly better when they were movies they had seen before. We also explore specific aspects of movie review texts that participants marked as important for each quality. Overall, we establish that modern LLMs are a promising source of recommendation explanations, and we intend on further exploring personalizable text explanations in the future.


Fair Ranking under Disparate Uncertainty

arXiv.org Artificial Intelligence

Ranking is a ubiquitous method for focusing the attention of human evaluators on a manageable subset of options. Its use ranges from surfacing potentially relevant products on an e-commerce site to prioritizing college applications for human review. While ranking can make human evaluation far more effective by focusing attention on the most promising options, we argue that it can introduce unfairness if the uncertainty of the underlying relevance model differs between groups of options. Unfortunately, such disparity in uncertainty appears widespread, since the relevance estimates for minority groups tend to have higher uncertainty due to a lack of data or appropriate features. To overcome this fairness issue, we propose Equal-Opportunity Ranking (EOR) as a new fairness criterion for ranking that provably corrects for the disparity in uncertainty between groups. Furthermore, we present a practical algorithm for computing EOR rankings in time $O(n \log(n))$ and prove its close approximation guarantee to the globally optimal solution. In a comprehensive empirical evaluation on synthetic data, a US Census dataset, and a real-world case study of Amazon search queries, we find that the algorithm reliably guarantees EOR fairness while providing effective rankings.