Not enough data to create a plot.
Try a different view from the menu above.
Jitendra Malik
Approximate Feature Collisions in Neural Nets
Ke Li, Tianhao Zhang, Jitendra Malik
Work on adversarial examples has shown that neural nets are surprisingly sensitive to adversarially chosen changes of small magnitude. In this paper, we show the opposite: neural nets could be surprisingly insensitive to adversarially chosen changes of large magnitude. We observe that this phenomenon can arise from the intrinsic properties of the ReLU activation function. As a result, two very different examples could share the same feature activation and therefore the same classification decision. We refer to this phenomenon as feature collision and the corresponding examples as colliding examples. We find that colliding examples are quite abundant: we empirically demonstrate the existence of polytopes of approximately colliding examples in the neighbourhood of practically any example.
Learning a Multi-View Stereo Machine
Abhishek Kar, Christian Häne, Jitendra Malik
We present a learnt system for multi-view stereopsis. In contrast to recent learning based methods for 3D reconstruction, we leverage the underlying 3D geometry of the problem through feature projection and unprojection along viewing rays. By formulating these operations in a differentiable manner, we are able to learn the system end-to-end for the task of metric 3D reconstruction. End-to-end learning allows us to jointly reason about shape priors while conforming to geometric constraints, enabling reconstruction from much fewer images (even a single image) than required by classical approaches as well as completion of unseen surfaces. We thoroughly evaluate our approach on the ShapeNet dataset and demonstrate the benefits over classical approaches and recent learning based methods.
Approximate Feature Collisions in Neural Nets
Ke Li, Tianhao Zhang, Jitendra Malik
Learning to Poke by Poking: Experiential Learning of Intuitive Physics
Pulkit Agrawal, Ashvin V. Nair, Pieter Abbeel, Jitendra Malik, Sergey Levine
We investigate an experiential learning paradigm for acquiring an internal model of intuitive physics. Our model is evaluated on a real-world robotic manipulation task that requires displacing objects to target locations by poking. The robot gathered over 400 hours of experience by executing more than 100K pokes on different objects. We propose a novel approach based on deep neural networks for modeling the dynamics of robot's interactions directly from images, by jointly estimating forward and inverse models of dynamics. The inverse model objective provides supervision to construct informative visual features, which the forward model can then predict and in turn regularize the feature space for the inverse model. The interplay between these two objectives creates useful, accurate models that can then be used for multi-step decision making. This formulation has the additional benefit that it is possible to learn forward models in an abstract feature space and thus alleviate the need of predicting pixels. Our experiments show that this joint modeling approach outperforms alternative methods.
Learning a Multi-View Stereo Machine
Abhishek Kar, Christian Häne, Jitendra Malik