Goto

Collaborating Authors

 Jin, Wei


Graph Structure Learning for Robust Graph Neural Networks

arXiv.org Machine Learning

Graph Neural Networks (GNNs) are powerful tools in representation learning for graphs. However, recent studies show that GNNs are vulnerable to carefully-crafted perturbations, called adversarial attacks. Adversarial attacks can easily fool GNNs in making predictions for downstream tasks. The vulnerability to adversarial attacks has raised increasing concerns for applying GNNs in safety-critical applications. Therefore, developing robust algorithms to defend adversarial attacks is of great significance. A natural idea to defend adversarial attacks is to clean the perturbed graph. It is evident that real-world graphs share some intrinsic properties. For example, many real-world graphs are low-rank and sparse, and the features of two adjacent nodes tend to be similar. In fact, we find that adversarial attacks are likely to violate these graph properties. Therefore, in this paper, we explore these properties to defend adversarial attacks on graphs. In particular, we propose a general framework Pro-GNN, which can jointly learn a structural graph and a robust graph neural network model from the perturbed graph guided by these properties. Extensive experiments on real-world graphs demonstrate that the proposed framework achieves significantly better performance compared with the state-of-the-art defense methods, even when the graph is heavily perturbed. We release the implementation of Pro-GNN to our DeepRobust repository for adversarial attacks and defenses (footnote: https://github.com/DSE-MSU/DeepRobust). The specific experimental settings to reproduce our results can be found in https://github.com/ChandlerBang/Pro-GNN.


Self-supervised Learning on Graphs: Deep Insights and New Direction

arXiv.org Machine Learning

The success of deep learning notoriously requires larger amounts of costly annotated data. This has led to the development of self-supervised learning (SSL) that aims to alleviate this limitation by creating domain specific pretext tasks on unlabeled data. Simultaneously, there are increasing interests in generalizing deep learning to the graph domain in the form of graph neural networks (GNNs). GNNs can naturally utilize unlabeled nodes through the simple neighborhood aggregation that is unable to thoroughly make use of unlabeled nodes. Thus, we seek to harness SSL for GNNs to fully exploit the unlabeled data. Different from data instances in the image and text domains, nodes in graphs present unique structure information and they are inherently linked indicating not independent and identically distributed (or i.i.d.). Such complexity is a double-edged sword for SSL on graphs. On the one hand, it determines that it is challenging to adopt solutions from the image and text domains to graphs and dedicated efforts are desired. On the other hand, it provides rich information that enables us to build SSL from a variety of perspectives. Thus, in this paper, we first deepen our understandings on when, why, and which strategies of SSL work with GNNs by empirically studying numerous basic SSL pretext tasks on graphs. Inspired by deep insights from the empirical studies, we propose a new direction SelfTask to build advanced pretext tasks that are able to achieve state-of-the-art performance on various real-world datasets. The specific experimental settings to reproduce our results can be found in \url{https://github.com/ChandlerBang/SelfTask-GNN}.


DeepRobust: A PyTorch Library for Adversarial Attacks and Defenses

arXiv.org Machine Learning

DeepRobust is a PyTorch [1] adversarial learning library which aims to build a comprehensive and easy-to-use platform to foster this research field. It currently contains more than 10 attack algorithms and 8 defense algorithms in image domain and 9 attack algorithms and 4 defense algorithms in graph domain, under a variety of deep learning architectures. In this manual, we introduce the main contents of DeepRobust with detailed instructions. The library is kept updated and can be found at https: // github.


Learning Feature Representations for Keyphrase Extraction

AAAI Conferences

In supervised approaches for keyphrase extraction, a candidate phrase is encoded with a set of hand-crafted features and machine learning algorithms are trained to discriminate keyphrases from non-keyphrases. Although the manually-designed features have shown to work well in practice, feature engineering is a difficult process that requires expert knowledge and normally does not generalize well. In this paper, we present SurfKE, a feature learning framework that exploits the text itself to automatically discover patterns that keyphrases exhibit. Our model represents the document as a graph and automatically learns feature representation of phrases. The proposed model obtains remarkable improvements in performance over strong baselines.