Jin, Peng
Text-Video Retrieval with Disentangled Conceptualization and Set-to-Set Alignment
Jin, Peng, Li, Hao, Cheng, Zesen, Huang, Jinfa, Wang, Zhennan, Yuan, Li, Liu, Chang, Chen, Jie
Text-video retrieval is a challenging cross-modal task, which aims to align visual entities with natural language descriptions. Current methods either fail to leverage the local details or are computationally expensive. What's worse, they fail to leverage the heterogeneous concepts in data. In this paper, we propose the Disentangled Conceptualization and Set-to-set Alignment (DiCoSA) to simulate the conceptualizing and reasoning process of human beings. For disentangled conceptualization, we divide the coarse feature into multiple latent factors related to semantic concepts. For set-to-set alignment, where a set of visual concepts correspond to a set of textual concepts, we propose an adaptive pooling method to aggregate semantic concepts to address the partial matching. In particular, since we encode concepts independently in only a few dimensions, DiCoSA is superior at efficiency and granularity, ensuring fine-grained interactions using a similar computational complexity as coarse-grained alignment. Extensive experiments on five datasets, including MSR-VTT, LSMDC, MSVD, ActivityNet, and DiDeMo, demonstrate that our method outperforms the existing state-of-the-art methods.
Simplifying Full Waveform Inversion via Domain-Independent Self-Supervised Learning
Feng, Yinan, Chen, Yinpeng, Jin, Peng, Feng, Shihang, Liu, Zicheng, Lin, Youzuo
Geophysics has witnessed success in applying deep learning to one of its core problems: full waveform inversion (FWI) to predict subsurface velocity maps from seismic data. It is treated as an image-to-image translation problem, jointly training an encoder for seismic data and a decoder for the velocity map from seismic-velocity pairs. In this paper, we report a surprising phenomenon: when training an encoder and decoder separately in their own domains via self-supervised learning, a linear relationship is observed across domains in the latent spaces. Moreover, this phenomenon connects multiple FWI datasets in an elegant manner: these datasets can share the self-learned encoder and decoder with different linear mappings. Based on these findings, we develop SimFWI, a new paradigm that includes two steps: (a) learning a seismic encoder and a velocity decoder separately by masked image modeling over multiple datasets; (b) learning a linear mapping per dataset. Experimental results show that SimFWI can achieve comparable results to a jointly trained model from the supervision of paired seismic data and velocity maps.
Parallel Vertex Diffusion for Unified Visual Grounding
Cheng, Zesen, Li, Kehan, Jin, Peng, Ji, Xiangyang, Yuan, Li, Liu, Chang, Chen, Jie
Unified visual grounding pursues a simple and generic technical route to leverage multi-task data with less task-specific design. The most advanced methods typically present boxes and masks as vertex sequences to model referring detection and segmentation as an autoregressive sequential vertex generation paradigm. However, generating high-dimensional vertex sequences sequentially is error-prone because the upstream of the sequence remains static and cannot be refined based on downstream vertex information, even if there is a significant location gap. Besides, with limited vertexes, the inferior fitting of objects with complex contours restricts the performance upper bound. To deal with this dilemma, we propose a parallel vertex generation paradigm for superior high-dimension scalability with a diffusion model by simply modifying the noise dimension. An intuitive materialization of our paradigm is Parallel Vertex Diffusion (PVD) to directly set vertex coordinates as the generation target and use a diffusion model to train and infer. We claim that it has two flaws: (1) unnormalized coordinate caused a high variance of loss value; (2) the original training objective of PVD only considers point consistency but ignores geometry consistency. To solve the first flaw, Center Anchor Mechanism (CAM) is designed to convert coordinates as normalized offset values to stabilize the training loss value. For the second flaw, Angle summation loss (ASL) is designed to constrain the geometry difference of prediction and ground truth vertexes for geometry-level consistency. Empirical results show that our PVD achieves state-of-the-art in both referring detection and segmentation, and our paradigm is more scalable and efficient than sequential vertex generation with high-dimension data.
Learning on Abstract Domains: A New Approach for Verifiable Guarantee in Reinforcement Learning
Jin, Peng, Zhang, Min, Li, Jianwen, Han, Li, Wen, Xuejun
Formally verifying Deep Reinforcement Learning (DRL) systems is a challenging task due to the dynamic continuity of system behaviors and the black-box feature of embedded neural networks. In this paper, we propose a novel abstraction-based approach to train DRL systems on finite abstract domains instead of concrete system states. It yields neural networks whose input states are finite, making hosting DRL systems directly verifiable using model checking techniques. Our approach is orthogonal to existing DRL algorithms and off-the-shelf model checkers. We implement a resulting prototype training and verification framework and conduct extensive experiments on the state-of-the-art benchmark. The results show that the systems trained in our approach can be verified more efficiently while they retain comparable performance against those that are trained without abstraction.
PID: A New Benchmark Dataset to Classify and Densify Pavement Distresses
Majidifard, Hamed, Jin, Peng, Adu-Gyamfi, Yaw, Buttlar, William G.
Automated pavement distresses detection using road images remains a challenging topic in the computer vision research community. Recent developments in deep learning has led to considerable research activity directed towards improving the efficacy of automated pavement distress identification and rating. Deep learning models require a large ground truth data set, which is often not readily available in the case of pavements. In this study, a labeled dataset approach is introduced as a first step towards a more robust, easy-to-deploy pavement condition assessment system. The technique is termed herein as the Pavement Image Dataset (PID) method. The dataset consists of images captured from two camera views of an identical pavement segment, i.e., a wide-view and a top-down view. The wide-view images were used to classify the distresses and to train the deep learning frameworks, while the top-down view images allowed calculation of distress density, which will be used in future studies aimed at automated pavement rating. For the wide view group dataset, 7,237 images were manually annotated and distresses classified into nine categories. Images were extracted using the Google Application Programming Interface (API), selecting street-view images using a python-based code developed for this project. The new dataset was evaluated using two mainstream deep learning frameworks: You Only Look Once (YOLO v2) and Faster Region Convolution Neural Network (Faster R-CNN). Accuracy scores using the F1 index were found to be 0.84 for YOLOv2 and 0.65 for the Faster R-CNN model runs; both quite acceptable considering the convenience of utilizing Google maps images.
Adversarial Sub-sequence for Text Generation
Chen, Xingyuan, Li, Yanzhe, Jin, Peng, Zhang, Jiuhua, Dai, Xinyu, Chen, Jiajun, Song, Gang
Generative adversarial nets (GAN) has been successfully introduced for generating text to alleviate the exposure bias. However, discriminators in these models only evaluate the entire sequence, which causes feedback sparsity and mode collapse. To tackle these problems, we propose a novel mechanism. It first segments the entire sequence into several sub-sequences. Then these sub-sequences, together with the entire sequence, are evaluated individually by the discriminator. At last these feedback signals are all used to guide the learning of GAN. This mechanism learns the generation of both the entire sequence and the sub-sequences simultaneously. Learning to generate sub-sequences is easy and is helpful in generating an entire sequence. It is easy to improve the existing GAN-based models with this mechanism. We rebuild three previous well-designed models with our mechanism, and the experimental results on benchmark data show these models are improved significantly, the best one outperforms the state-of-the-art model.\footnote[1]{All code and data are available at https://github.com/liyzcj/seggan.git
Dataless Text Classification with Descriptive LDA
Chen, Xingyuan (Leshan Normal University) | Xia, Yunqing (Tsinghua University) | Jin, Peng (Leshan Normal University) | Carroll, John (University of Sussex)
Manually labeling documents for training a text classifier is expensive and time-consuming. Moreover, a classifier trained on labeled documents may suffer from overfitting and adaptability problems. Dataless text classification (DLTC) has been proposed as a solution to these problems, since it does not require labeled documents. Previous research in DLTC has used explicit semantic analysis of Wikipedia content to measure semantic distance between documents, which is in turn used to classify test documents based on nearest neighbours. The semantic-based DLTC method has a major drawback in that it relies on a large-scale, finely-compiled semantic knowledge base, which is difficult to obtain in many scenarios. In this paper we propose a novel kind of model, descriptive LDA (DescLDA), which performs DLTC with only category description words and unlabeled documents. In DescLDA, the LDA model is assembled with a describing device to infer Dirichlet priors from prior descriptive documents created with category description words. The Dirichlet priors are then used by LDA to induce category-aware latent topics from unlabeled documents. Experimental results with the 20Newsgroups and RCV1 datasets show that: (1) our DLTC method is more effective than the semantic-based DLTC baseline method; and (2) the accuracy of our DLTC method is very close to state-of-the-art supervised text classification methods. As neither external knowledge resources nor labeled documents are required, our DLTC method is applicable to a wider range of scenarios.