Goto

Collaborating Authors

 Jiang, Wenhao


Respiratory Motion Correction in Abdominal MRI using a Densely Connected U-Net with GAN-guided Training

arXiv.org Artificial Intelligence

Abdominal magnetic resonance imaging (MRI) provides a straightforward way of characterizing tissue and locating lesions of patients as in standard diagnosis. However, abdominal MRI often suffers from respiratory motion artifacts, which leads to blurring and ghosting that significantly deteriorates the imaging quality. Conventional methods to reduce or eliminate these motion artifacts include breath holding, patient sedation, respiratory gating, and image post-processing, but these strategies inevitably involve extra scanning time and patient discomfort. In this paper, we propose a novel deep-learning-based model to recover MR images from respiratory motion artifacts. The proposed model comprises a densely connected U-net with generative adversarial network (GAN)- guided training and a perceptual loss function. We validate the model using a diverse collection of MRI data that are adversely affected by both synthetic and authentic respiration artifacts. Effective outcomes of motion removal are demonstrated. Our experimental results show the great potential of utilizing deep-learning-based methods in respiratory motion correction for abdominal MRI.


The l2,1-Norm Stacked Robust Autoencoders for Domain Adaptation

AAAI Conferences

Recently, deep learning methods that employ stacked denoising autoencoders (SDAs) have been successfully applied in domain adaptation. Remarkable performance in multi-domain sentiment analysis datasets has been reported, making deep learning a promising approach to domain adaptation problems. SDAs are distinguished by learning robust data representations for recovering the original features that have been artificially corrupted with noise. The idea has been further exploited to marginalize out the random corruptions by a state-of-the-art method called mSDA. In this paper, a deep learning method for domain adaptation called l 2,1 -norm stacked robust autoencoders ( l 2,1 -SRA) is proposed to learn useful representations for domain adaptation tasks. Each layer of l 2,1 -SRA contains two steps: a robust linear reconstruction step which is based on l 2,1 robust regression and a non-linear squashing transformation step. The experimental results demonstrate that the proposed method is very effective in multiple cross domain classification datasets which include Amazon review dataset, spam dataset from ECML/PKDD discovery challenge 2006 and 20 newsgroups dataset.


Robust Dictionary Learning with Capped l1-Norm

AAAI Conferences

Expressing data vectors as sparse linear combinations of basis elements (dictionary) is widely used in machine learning, signal processing, and statistics. It has been found that dictionaries learned from data are more effective than off-the-shelf ones. Dictionary learning has become an important tool for computer vision. Traditional dictionary learning methods use quadratic loss function which is known sensitive to outliers. Hence they could not learn the good dictionaries when outliers exist. In this paper, aiming at learning dictionaries resistant to outliers, we proposed capped l1-norm based dictionary learning and an efficient iterative re-weighted algorithm to solve the problem. We provided theoretical analysis and carried out extensive experiments on real word datasets and synthetic datasets to show the effectiveness of our method.