Jiang, Liwei
WildGuard: Open One-Stop Moderation Tools for Safety Risks, Jailbreaks, and Refusals of LLMs
Han, Seungju, Rao, Kavel, Ettinger, Allyson, Jiang, Liwei, Lin, Bill Yuchen, Lambert, Nathan, Choi, Yejin, Dziri, Nouha
We introduce WildGuard -- an open, light-weight moderation tool for LLM safety that achieves three goals: (1) identifying malicious intent in user prompts, (2) detecting safety risks of model responses, and (3) determining model refusal rate. Together, WildGuard serves the increasing needs for automatic safety moderation and evaluation of LLM interactions, providing a one-stop tool with enhanced accuracy and broad coverage across 13 risk categories. While existing open moderation tools such as Llama-Guard2 score reasonably well in classifying straightforward model interactions, they lag far behind a prompted GPT-4, especially in identifying adversarial jailbreaks and in evaluating models' refusals, a key measure for evaluating safety behaviors in model responses. To address these challenges, we construct WildGuardMix, a large-scale and carefully balanced multi-task safety moderation dataset with 92K labeled examples that cover vanilla (direct) prompts and adversarial jailbreaks, paired with various refusal and compliance responses. WildGuardMix is a combination of WildGuardTrain, the training data of WildGuard, and WildGuardTest, a high-quality human-annotated moderation test set with 5K labeled items covering broad risk scenarios. Through extensive evaluations on WildGuardTest and ten existing public benchmarks, we show that WildGuard establishes state-of-the-art performance in open-source safety moderation across all the three tasks compared to ten strong existing open-source moderation models (e.g., up to 26.4% improvement on refusal detection). Importantly, WildGuard matches and sometimes exceeds GPT-4 performance (e.g., up to 3.9% improvement on prompt harmfulness identification). WildGuard serves as a highly effective safety moderator in an LLM interface, reducing the success rate of jailbreak attacks from 79.8% to 2.4%.
WildTeaming at Scale: From In-the-Wild Jailbreaks to (Adversarially) Safer Language Models
Jiang, Liwei, Rao, Kavel, Han, Seungju, Ettinger, Allyson, Brahman, Faeze, Kumar, Sachin, Mireshghallah, Niloofar, Lu, Ximing, Sap, Maarten, Choi, Yejin, Dziri, Nouha
We introduce WildTeaming, an automatic LLM safety red-teaming framework that mines in-the-wild user-chatbot interactions to discover 5.7K unique clusters of novel jailbreak tactics, and then composes multiple tactics for systematic exploration of novel jailbreaks. Compared to prior work that performed red-teaming via recruited human workers, gradient-based optimization, or iterative revision with LLMs, our work investigates jailbreaks from chatbot users who were not specifically instructed to break the system. WildTeaming reveals previously unidentified vulnerabilities of frontier LLMs, resulting in up to 4.6x more diverse and successful adversarial attacks compared to state-of-the-art jailbreak methods. While many datasets exist for jailbreak evaluation, very few open-source datasets exist for jailbreak training, as safety training data has been closed even when model weights are open. With WildTeaming we create WildJailbreak, a large-scale open-source synthetic safety dataset with 262K vanilla (direct request) and adversarial (complex jailbreak) prompt-response pairs. To mitigate exaggerated safety behaviors, WildJailbreak provides two contrastive types of queries: 1) harmful queries (vanilla & adversarial) and 2) benign queries that resemble harmful queries in form but contain no harm. As WildJailbreak considerably upgrades the quality and scale of existing safety resources, it uniquely enables us to examine the scaling effects of data and the interplay of data properties and model capabilities during safety training. Through extensive experiments, we identify the training properties that enable an ideal balance of safety behaviors: appropriate safeguarding without over-refusal, effective handling of vanilla and adversarial queries, and minimal, if any, decrease in general capabilities. All components of WildJailbeak contribute to achieving balanced safety behaviors of models.
CULTURE-GEN: Revealing Global Cultural Perception in Language Models through Natural Language Prompting
Li, Huihan, Jiang, Liwei, Huang, Jena D., Kim, Hyunwoo, Santy, Sebastin, Sorensen, Taylor, Lin, Bill Yuchen, Dziri, Nouha, Ren, Xiang, Choi, Yejin
As the utilization of large language models (LLMs) has proliferated worldwide, it is crucial for them to have adequate knowledge and fair representation for diverse global cultures. In this work, we uncover culture perceptions of three SOTA models on 110 countries and regions on 8 culture-related topics through culture-conditioned generations, and extract symbols from these generations that are associated to each culture by the LLM. We discover that culture-conditioned generation consist of linguistic "markers" that distinguish marginalized cultures apart from default cultures. We also discover that LLMs have an uneven degree of diversity in the culture symbols, and that cultures from different geographic regions have different presence in LLMs' culture-agnostic generation. Our findings promote further research in studying the knowledge and fairness of global culture perception in LLMs. Code and Data can be found in: https://github.com/huihanlhh/Culture-Gen/
CulturalTeaming: AI-Assisted Interactive Red-Teaming for Challenging LLMs' (Lack of) Multicultural Knowledge
Chiu, Yu Ying, Jiang, Liwei, Antoniak, Maria, Park, Chan Young, Li, Shuyue Stella, Bhatia, Mehar, Ravi, Sahithya, Tsvetkov, Yulia, Shwartz, Vered, Choi, Yejin
Frontier large language models (LLMs) are developed by researchers and practitioners with skewed cultural backgrounds and on datasets with skewed sources. However, LLMs' (lack of) multicultural knowledge cannot be effectively assessed with current methods for developing benchmarks. Existing multicultural evaluations primarily rely on expensive and restricted human annotations or potentially outdated internet resources. Thus, they struggle to capture the intricacy, dynamics, and diversity of cultural norms. LLM-generated benchmarks are promising, yet risk propagating the same biases they are meant to measure. To synergize the creativity and expert cultural knowledge of human annotators and the scalability and standardizability of LLM-based automation, we introduce CulturalTeaming, an interactive red-teaming system that leverages human-AI collaboration to build truly challenging evaluation dataset for assessing the multicultural knowledge of LLMs, while improving annotators' capabilities and experiences. Our study reveals that CulturalTeaming's various modes of AI assistance support annotators in creating cultural questions, that modern LLMs fail at, in a gamified manner. Importantly, the increased level of AI assistance (e.g., LLM-generated revision hints) empowers users to create more difficult questions with enhanced perceived creativity of themselves, shedding light on the promises of involving heavier AI assistance in modern evaluation dataset creation procedures. Through a series of 1-hour workshop sessions, we gather CULTURALBENCH-V0.1, a compact yet high-quality evaluation dataset with users' red-teaming attempts, that different families of modern LLMs perform with accuracy ranging from 37.7% to 72.2%, revealing a notable gap in LLMs' multicultural proficiency.
Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits
Mun, Jimin, Jiang, Liwei, Liang, Jenny, Cheong, Inyoung, DeCario, Nicole, Choi, Yejin, Kohno, Tadayoshi, Sap, Maarten
General purpose AI, such as ChatGPT, seems to have lowered the barriers for the public to use AI and harness its power. However, the governance and development of AI still remain in the hands of a few, and the pace of development is accelerating without proper assessment of risks. As a first step towards democratic governance and risk assessment of AI, we introduce Particip-AI, a framework to gather current and future AI use cases and their harms and benefits from non-expert public. Our framework allows us to study more nuanced and detailed public opinions on AI through collecting use cases, surfacing diverse harms through risk assessment under alternate scenarios (i.e., developing and not developing a use case), and illuminating tensions over AI development through making a concluding choice on its development. To showcase the promise of our framework towards guiding democratic AI, we gather responses from 295 demographically diverse participants. We find that participants' responses emphasize applications for personal life and society, contrasting with most current AI development's business focus. This shows the value of surfacing diverse harms that are complementary to expert assessments. Furthermore, we found that perceived impact of not developing use cases predicted participants' judgements of whether AI use cases should be developed, and highlighted lay users' concerns of techno-solutionism. We conclude with a discussion on how frameworks like Particip-AI can further guide democratic AI governance and regulation.
Information-Theoretic Distillation for Reference-less Summarization
Jung, Jaehun, Lu, Ximing, Jiang, Liwei, Brahman, Faeze, West, Peter, Koh, Pang Wei, Choi, Yejin
The current winning recipe for automatic summarization is using proprietary large-scale language models (LLMs) such as ChatGPT as is, or imitation learning from them as teacher models. While increasingly ubiquitous dependence on such large-scale language models is convenient, there remains an important question of whether small-scale models could have achieved competitive results, if we were to seek an alternative learning method -- that allows for a more cost-efficient, controllable, yet powerful summarizer. We present InfoSumm, a novel framework to distill a powerful summarizer based on the information-theoretic objective for summarization, without relying on either the LLM's capability or human-written references. To achieve this, we first propose a novel formulation of the desiderata of summarization (saliency, faithfulness and brevity) through the lens of mutual information between the original document and the summary. Based on this formulation, we start off from Pythia-2.8B as the teacher model, which is not yet capable of summarization, then self-train the model to optimize for the information-centric measures of ideal summaries. Distilling from the improved teacher, we arrive at a compact but powerful summarizer with only 568M parameters that performs competitively against ChatGPT, without ever relying on ChatGPT's capabilities. Extensive analysis demonstrates that our approach outperforms in-domain supervised models in human evaluation, let alone state-of-the-art unsupervised methods, and wins over ChatGPT in controllable summarization.
JAMDEC: Unsupervised Authorship Obfuscation using Constrained Decoding over Small Language Models
Fisher, Jillian, Lu, Ximing, Jung, Jaehun, Jiang, Liwei, Harchaoui, Zaid, Choi, Yejin
The permanence of online content combined with the enhanced authorship identification techniques calls for stronger computational methods to protect the identity and privacy of online authorship when needed, e.g., blind reviews for scientific papers, anonymous online reviews, or anonymous interactions in the mental health forums. In this paper, we propose an unsupervised inference-time approach to authorship obfuscation to address the unique challenges of authorship obfuscation: lack of supervision data for diverse authorship and domains, and the need for a sufficient level of revision beyond simple paraphrasing to obfuscate the authorship, all the while preserving the original content and fluency. We introduce JAMDEC, a user-controlled, inference-time algorithm for authorship obfuscation that can be in principle applied to any text and authorship. Our approach builds on small language models such as GPT2-XL in order to help avoid disclosing the original content to proprietary LLM's APIs, while also reducing the performance gap between small and large language models via algorithmic enhancement. The key idea behind our approach is to boost the creative power of smaller language models through constrained decoding, while also allowing for user-specified controls and flexibility. Experimental results demonstrate that our approach based on GPT2-XL outperforms previous state-of-the-art methods based on comparably small models, while performing competitively against GPT3.5 175B, a propriety model that is two orders of magnitudes larger.
A Roadmap to Pluralistic Alignment
Sorensen, Taylor, Moore, Jared, Fisher, Jillian, Gordon, Mitchell, Mireshghallah, Niloofar, Rytting, Christopher Michael, Ye, Andre, Jiang, Liwei, Lu, Ximing, Dziri, Nouha, Althoff, Tim, Choi, Yejin
With increased power and prevalence of AI systems, it is ever more critical that AI systems are designed to serve all, i.e., people with diverse values and perspectives. However, aligning models to serve pluralistic human values remains an open research question. In this piece, we propose a roadmap to pluralistic alignment, specifically using language models as a test bed. We identify and formalize three possible ways to define and operationalize pluralism in AI systems: 1) Overton pluralistic models that present a spectrum of reasonable responses; 2) Steerably pluralistic models that can steer to reflect certain perspectives; and 3) Distributionally pluralistic models that are well-calibrated to a given population in distribution. We also propose and formalize three possible classes of pluralistic benchmarks: 1) Multi-objective benchmarks, 2) Trade-off steerable benchmarks, which incentivize models to steer to arbitrary trade-offs, and 3) Jury-pluralistic benchmarks which explicitly model diverse human ratings. We use this framework to argue that current alignment techniques may be fundamentally limited for pluralistic AI; indeed, we highlight empirical evidence, both from our own experiments and from other work, that standard alignment procedures might reduce distributional pluralism in models, motivating the need for further research on pluralistic alignment.
NovaCOMET: Open Commonsense Foundation Models with Symbolic Knowledge Distillation
West, Peter, Bras, Ronan Le, Sorensen, Taylor, Lin, Bill Yuchen, Jiang, Liwei, Lu, Ximing, Chandu, Khyathi, Hessel, Jack, Baheti, Ashutosh, Bhagavatula, Chandra, Choi, Yejin
We present NovaCOMET, an open commonsense knowledge model, that combines the best aspects of knowledge and general task models. Compared to previous knowledge models, NovaCOMET allows open-format relations enabling direct application to reasoning tasks; compared to general task models like Flan-T5, it explicitly centers knowledge, enabling superior performance for commonsense reasoning. NovaCOMET leverages the knowledge of opaque proprietary models to create an open knowledge pipeline. First, knowledge is symbolically distilled into NovATOMIC, a publicly-released discrete knowledge graph which can be audited, critiqued, and filtered. Next, we train NovaCOMET on NovATOMIC by fine-tuning an open-source pretrained model. NovaCOMET uses an open-format training objective, replacing the fixed relation sets of past knowledge models, enabling arbitrary structures within the data to serve as inputs or outputs. The resulting generation model, optionally augmented with human annotation, matches or exceeds comparable open task models like Flan-T5 on a range of commonsense generation tasks. NovaCOMET serves as a counterexample to the contemporary focus on instruction tuning only, demonstrating a distinct advantage to explicitly modeling commonsense knowledge as well.
Inference-Time Policy Adapters (IPA): Tailoring Extreme-Scale LMs without Fine-tuning
Lu, Ximing, Brahman, Faeze, West, Peter, Jang, Jaehun, Chandu, Khyathi, Ravichander, Abhilasha, Qin, Lianhui, Ammanabrolu, Prithviraj, Jiang, Liwei, Ramnath, Sahana, Dziri, Nouha, Fisher, Jillian, Lin, Bill Yuchen, Hallinan, Skyler, Ren, Xiang, Welleck, Sean, Choi, Yejin
While extreme-scale language models have demonstrated exceptional performance on a variety of language tasks, the degree of control over these language models through pure prompting can often be limited. Directly fine-tuning such language models can be effective for tailoring them, but it can be either extremely costly (e.g., GPT-3) or not even feasible for the broader community (e.g., GPT-4). We propose Inference-time Policy Adapters (IPA), which efficiently tailors a language model such as GPT-3 without fine-tuning it. IPA guides a large base model during decoding time through a lightweight policy adapter trained to optimize an arbitrary user objective with reinforcement learning. On five challenging text generation tasks, such as toxicity reduction and lexically constrained generation, IPA consistently brings significant improvements over off-the-shelf language models. It outperforms competitive baseline methods, sometimes even including expensive fine-tuning. In particular, tailoring GPT-2 with IPA can outperform GPT-3, while tailoring GPT-3 with IPA brings a major performance boost over GPT-3 (and sometimes even over GPT-4). Our promising results highlight the potential of IPA as a lightweight alternative to tailoring extreme-scale language models.