Jiang, Junchen
Automatic and Efficient Customization of Neural Networks for ML Applications
Liu, Yuhan, Wan, Chengcheng, Du, Kuntai, Hoffmann, Henry, Jiang, Junchen, Lu, Shan, Maire, Michael
ML APIs have greatly relieved application developers of the burden to design and train their own neural network models -- classifying objects in an image can now be as simple as one line of Python code to call an API. However, these APIs offer the same pre-trained models regardless of how their output is used by different applications. This can be suboptimal as not all ML inference errors can cause application failures, and the distinction between inference errors that can or cannot cause failures varies greatly across applications. To tackle this problem, we first study 77 real-world applications, which collectively use six ML APIs from two providers, to reveal common patterns of how ML API output affects applications' decision processes. Inspired by the findings, we propose ChameleonAPI, an optimization framework for ML APIs, which takes effect without changing the application source code. ChameleonAPI provides application developers with a parser that automatically analyzes the application to produce an abstract of its decision process, which is then used to devise an application-specific loss function that only penalizes API output errors critical to the application. ChameleonAPI uses the loss function to efficiently train a neural network model customized for each application and deploys it to serve API invocations from the respective application via existing interface. Compared to a baseline that selects the best-of-all commercial ML API, we show that ChameleonAPI reduces incorrect application decisions by 43%.
OneAdapt: Fast Adaptation for Deep Learning Applications via Backpropagation
Du, Kuntai, Liu, Yuhan, Hao, Yitian, Zhang, Qizheng, Wang, Haodong, Huang, Yuyang, Ananthanarayanan, Ganesh, Jiang, Junchen
Deep learning inference on streaming media data, such as object detection in video or LiDAR feeds and text extraction from audio waves, is now ubiquitous. To achieve high inference accuracy, these applications typically require significant network bandwidth to gather high-fidelity data and extensive GPU resources to run deep neural networks (DNNs). While the high demand for network bandwidth and GPU resources could be substantially reduced by optimally adapting the configuration knobs, such as video resolution and frame rate, current adaptation techniques fail to meet three requirements simultaneously: adapt configurations (i) with minimum extra GPU or bandwidth overhead; (ii) to reach near-optimal decisions based on how the data affects the final DNN's accuracy, and (iii) do so for a range of configuration knobs. This paper presents OneAdapt, which meets these requirements by leveraging a gradient-ascent strategy to adapt configuration knobs. The key idea is to embrace DNNs' differentiability to quickly estimate the accuracy's gradient to each configuration knob, called AccGrad. Specifically, OneAdapt estimates AccGrad by multiplying two gradients: InputGrad (i.e. how each configuration knob affects the input to the DNN) and DNNGrad (i.e. how the DNN input affects the DNN inference output). We evaluate OneAdapt across five types of configurations, four analytic tasks, and five types of input data. Compared to state-of-the-art adaptation schemes, OneAdapt cuts bandwidth usage and GPU usage by 15-59% while maintaining comparable accuracy or improves accuracy by 1-5% while using equal or fewer resources.
Ekya: Continuous Learning of Video Analytics Models on Edge Compute Servers
Bhardwaj, Romil, Xia, Zhengxu, Ananthanarayanan, Ganesh, Jiang, Junchen, Karianakis, Nikolaos, Shu, Yuanchao, Hsieh, Kevin, Bahl, Victor, Stoica, Ion
Video analytics applications use edge compute servers for the analytics of the videos (for bandwidth and privacy). Compressed models that are deployed on the edge servers for inference suffer from data drift, where the live video data diverges from the training data. Continuous learning handles data drift by periodically retraining the models on new data. Our work addresses the challenge of jointly supporting inference and retraining tasks on edge servers, which requires navigating the fundamental tradeoff between the retrained model's accuracy and the inference accuracy. Our solution Ekya balances this tradeoff across multiple models and uses a micro-profiler to identify the models that will benefit the most by retraining. Ekya's accuracy gain compared to a baseline scheduler is 29% higher, and the baseline requires 4x more GPU resources to achieve the same accuracy as Ekya.
Addressing Training Bias via Automated Image Annotation
Xiao, Zhujun, Zhu, Yanzi, Chen, Yuxin, Zhao, Ben Y., Jiang, Junchen, Zheng, Haitao
Build accurate DNN models requires training on large labeled, context specific datasets, especially those matching the target scenario. We believe advances in wireless localization, working in unison with cameras, can produce automated annotation of targets on images and videos captured in the wild. Using pedestrian and vehicle detection as examples, we demonstrate the feasibility, benefits, and challenges of an automatic image annotation system. Our work calls for new technical development on passive localization, mobile data analytics, and error-resilient ML models, as well as design issues in user privacy policies.