Goto

Collaborating Authors

 Ji, Ziwei


Reproducibility in Optimization: Theoretical Framework and Limits

arXiv.org Machine Learning

Machine learned models are increasingly entering wider ranges of domains in our lives, driving a constantly increasing number of important systems. Large scale systems can be trained in highly parallel and distributed training environments, with a large amount of randomness in training the models. While some systems may tolerate such randomness leading to models that differ from one another every time a model retrains, for many applications, reproducible models are required, where slight changes in training do not lead to drastic differences in the model learned. Beyond practical deployments of machine learned models, the reproducibility crisis in the machine learning academic world has also been well-documented: see [Pineau et al., 2021] and the references therein for an excellent discussion of the reasons for irreproducibility (insufficient exploration of hyperparameters and experimental setups, lack of sufficient documentation, inaccessible code, and different computational hardware) and for mitigation recommendations. However, recent papers [Chen et al., 2020, D'Amour et al., 2020, Dusenberry et al., 2020, Snapp and Shamir, 2021, Summers and Dinneen, 2021, Yu et al., 2021] have also demonstrated that even when models Part of this work was done when Kwangjun Ahn and Ziwei Ji were interns at Google Research.


Agnostic Learnability of Halfspaces via Logistic Loss

arXiv.org Machine Learning

We investigate approximation guarantees provided by logistic regression for the fundamental problem of agnostic learning of homogeneous halfspaces. Previously, for a certain broad class of "well-behaved" distributions on the examples, Diakonikolas et al. (2020) proved an $\tilde{\Omega}(\textrm{OPT})$ lower bound, while Frei et al. (2021) proved an $\tilde{O}(\sqrt{\textrm{OPT}})$ upper bound, where $\textrm{OPT}$ denotes the best zero-one/misclassification risk of a homogeneous halfspace. In this paper, we close this gap by constructing a well-behaved distribution such that the global minimizer of the logistic risk over this distribution only achieves $\Omega(\sqrt{\textrm{OPT}})$ misclassification risk, matching the upper bound in (Frei et al., 2021). On the other hand, we also show that if we impose a radial-Lipschitzness condition in addition to well-behaved-ness on the distribution, logistic regression on a ball of bounded radius reaches $\tilde{O}(\textrm{OPT})$ misclassification risk. Our techniques also show for any well-behaved distribution, regardless of radial Lipschitzness, we can overcome the $\Omega(\sqrt{\textrm{OPT}})$ lower bound for logistic loss simply at the cost of one additional convex optimization step involving the hinge loss and attain $\tilde{O}(\textrm{OPT})$ misclassification risk. This two-step convex optimization algorithm is simpler than previous methods obtaining this guarantee, all of which require solving $O(\log(1/\textrm{OPT}))$ minimization problems.


Fast Margin Maximization via Dual Acceleration

arXiv.org Machine Learning

We present and analyze a momentum-based gradient method for training linear classifiers with an exponentially-tailed loss (e.g., the exponential or logistic loss), which maximizes the classification margin on separable data at a rate of $\widetilde{\mathcal{O}}(1/t^2)$. This contrasts with a rate of $\mathcal{O}(1/\log(t))$ for standard gradient descent, and $\mathcal{O}(1/t)$ for normalized gradient descent. This momentum-based method is derived via the convex dual of the maximum-margin problem, and specifically by applying Nesterov acceleration to this dual, which manages to result in a simple and intuitive method in the primal. This dual view can also be used to derive a stochastic variant, which performs adaptive non-uniform sampling via the dual variables.


Early-stopped neural networks are consistent

arXiv.org Machine Learning

This work studies the behavior of neural networks trained with the logistic loss via gradient descent on binary classification data where the underlying data distribution is general, and the (optimal) Bayes risk is not necessarily zero. In this setting, it is shown that gradient descent with early stopping achieves population risk arbitrarily close to optimal in terms of not just logistic and misclassification losses, but also in terms of calibration, meaning the sigmoid mapping of its outputs approximates the true underlying conditional distribution arbitrarily finely. Moreover, the necessary iteration, sample, and architectural complexities of this analysis all scale naturally with a certain complexity measure of the true conditional model. Lastly, while it is not shown that early stopping is necessary, it is shown that any univariate classifier satisfying a local interpolation property is necessarily inconsistent.


Model Generalization on COVID-19 Fake News Detection

arXiv.org Artificial Intelligence

Amid the pandemic COVID-19, the world is facing unprecedented infodemic with the proliferation of both fake and real information. Considering the problematic consequences that the COVID-19 fake-news have brought, the scientific community has put effort to tackle it. To contribute to this fight against the infodemic, we aim to achieve a robust model for the COVID-19 fake-news detection task proposed at CONSTRAINT 2021 (FakeNews-19) by taking two separate approaches: 1) fine-tuning transformers based language models with robust loss functions and 2) removing harmful training instances through influence calculation. We further evaluate the robustness of our models by evaluating on different COVID-19 misinformation test set (Tweets-19) to understand model generalization ability. With the first approach, we achieve 98.13% for weighted F1 score (W-F1) for the shared task, whereas 38.18% W-F1 on the Tweets-19 highest. On the contrary, by performing influence data cleansing, our model with 99% cleansing percentage can achieve 54.33% W-F1 score on Tweets-19 with a trade-off. By evaluating our models on two COVID-19 fake-news test sets, we suggest the importance of model generalization ability in this task to step forward to tackle the COVID-19 fake-news problem in online social media platforms.


CrossNER: Evaluating Cross-Domain Named Entity Recognition

arXiv.org Artificial Intelligence

Cross-domain named entity recognition (NER) models are able to cope with the scarcity issue of NER samples in target domains. However, most of the existing NER benchmarks lack domain-specialized entity types or do not focus on a certain domain, leading to a less effective cross-domain evaluation. To address these obstacles, we introduce a cross-domain NER dataset (CrossNER), a fully-labeled collection of NER data spanning over five diverse domains with specialized entity categories for different domains. Additionally, we also provide a domain-related corpus since using it to continue pre-training language models (domain-adaptive pre-training) is effective for the domain adaptation. We then conduct comprehensive experiments to explore the effectiveness of leveraging different levels of the domain corpus and pre-training strategies to do domain-adaptive pre-training for the cross-domain task. Results show that focusing on the fractional corpus containing domain-specialized entities and utilizing a more challenging pre-training strategy in domain-adaptive pre-training are beneficial for the NER domain adaptation, and our proposed method can consistently outperform existing cross-domain NER baselines. Nevertheless, experiments also illustrate the challenge of this cross-domain NER task. We hope that our dataset and baselines will catalyze research in the NER domain adaptation area. The code and data are available at https://github.com/zliucr/CrossNER.


Directional convergence and alignment in deep learning

arXiv.org Machine Learning

Recent efforts to rigorously analyze the optimization of deep networks have yielded many exciting developments, for instance the neural tangent (Jacot et al., 2018; Du et al., 2018; Allen-Zhu et al., 2018; Zou et al., 2018) and mean-field perspectives (Mei et al., 2019; Chizat and Bach, 2018). In these works, it is shown that small training or even testing error are possible for wide networks. The above theories, with finite width networks, usually require the weights to stay close to initialization in certain norms. By contrast, practitioners run their optimization methods as long as their computational budget allows (Shallue et al., 2018), and if the data can be perfectly classified, the parameters are guaranteed to diverge in norm to infinity (Lyu and Li, 2019). This raises a worry that the prediction surface can continually change during training; indeed, even on simple data, as in Figure 1, the prediction surface continues to change after perfect classification is achieved, and even with large width is not close to the maximum margin predictor from the neural tangent regime. If the prediction surface never stops changing, then the generalization behavior, adversarial stability, and other crucial properties of the predictor could also be unstable. In this paper, we resolve this worry by guaranteeing stable convergence behavior of deep networks as training proceeds, despite this growth of weight vectors to infinity. Concretely: 1. Directional convergence: the parameters converge in direction, which suffices to guarantee convergence of many other relevant quantities, such as the prediction margins.


Multi-hop Question Generation with Graph Convolutional Network

arXiv.org Artificial Intelligence

Multi-hop Question Generation (QG) aims to generate answer-related questions by aggregating and reasoning over multiple scattered evidence from different paragraphs. It is a more challenging yet under-explored task compared to conventional single-hop QG, where the questions are generated from the sentence containing the answer or nearby sentences in the same paragraph without complex reasoning. To address the additional challenges in multi-hop QG, we propose Multi-Hop Encoding Fusion Network for Question Generation (MulQG), which does context encoding in multiple hops with Graph Convolutional Network and encoding fusion via an Encoder Reasoning Gate. To the best of our knowledge, we are the first to tackle the challenge of multi-hop reasoning over paragraphs without any sentence-level information. Empirical results on HotpotQA dataset demonstrate the effectiveness of our method, in comparison with baselines on automatic evaluation metrics. Moreover, from the human evaluation, our proposed model is able to generate fluent questions with high completeness and outperforms the strongest baseline by 20.8% in the multi-hop evaluation. The code is publicly available at https://github.com/HLTCHKUST/MulQG}{https://github.com/HLTCHKUST/MulQG .


Gradient descent follows the regularization path for general losses

arXiv.org Machine Learning

Recent work across many machine learning disciplines has highlighted that standard descent methods, even without explicit regularization, do not merely minimize the training error, but also exhibit an implicit bias. This bias is typically towards a certain regularized solution, and relies upon the details of the learning process, for instance the use of the cross-entropy loss. In this work, we show that for empirical risk minimization over linear predictors with arbitrary convex, strictly decreasing losses, if the risk does not attain its infimum, then the gradient-descent path and the algorithm-independent regularization path converge to the same direction (whenever either converges to a direction). Using this result, we provide a justification for the widely-used exponentially-tailed losses (such as the exponential loss or the logistic loss): while this convergence to a direction for exponentially-tailed losses is necessarily to the maximum-margin direction, other losses such as polynomially-tailed losses may induce convergence to a direction with a poor margin.


Neural tangent kernels, transportation mappings, and universal approximation

arXiv.org Machine Learning

This paper establishes rates of universal approximation for the shallow neural tangent kernel (NTK): network weights are only allowed microscopic changes from random initialization, which entails that activations are mostly unchanged, and the network is nearly equivalent to its linearization. Concretely, the paper has two main contributions: a generic scheme to approximate functions with the NTK by sampling from transport mappings between the initial weights and their desired values, and the construction of transport mappings via Fourier transforms. Regarding the first contribution, the proof scheme provides another perspective on how the NTK regime arises from rescaling: redundancy in the weights due to resampling allows individual weights to be scaled down. Regarding the second contribution, the most notable transport mapping asserts that roughly $1 / \delta^{10d}$ nodes are sufficient to approximate continuous functions, where $\delta$ depends on the continuity properties of the target function. By contrast, nearly the same proof yields a bound of $1 / \delta^{2d}$ for shallow ReLU networks; this gap suggests a tantalizing direction for future work, separating shallow ReLU networks and their linearization.