Goto

Collaborating Authors

 Ji, Rongrong


Long-Range Feature Propagating for Natural Image Matting

arXiv.org Artificial Intelligence

Natural image matting estimates the alpha values of unknown regions in the trimap. Recently, deep learning based methods propagate the alpha values from the known regions to unknown regions according to the similarity between them. However, we find that more than 50\% pixels in the unknown regions cannot be correlated to pixels in known regions due to the limitation of small effective reception fields of common convolutional neural networks, which leads to inaccurate estimation when the pixels in the unknown regions cannot be inferred only with pixels in the reception fields. To solve this problem, we propose Long-Range Feature Propagating Network (LFPNet), which learns the long-range context features outside the reception fields for alpha matte estimation. Specifically, we first design the propagating module which extracts the context features from the downsampled image. Then, we present Center-Surround Pyramid Pooling (CSPP) that explicitly propagates the context features from the surrounding context image patch to the inner center image patch. Finally, we use the matting module which takes the image, trimap and context features to estimate the alpha matte. Experimental results demonstrate that the proposed method performs favorably against the state-of-the-art methods on the AlphaMatting and Adobe Image Matting datasets.


Training Compact CNNs for Image Classification using Dynamic-coded Filter Fusion

arXiv.org Artificial Intelligence

The mainstream approach for filter pruning is usually either to force a hard-coded importance estimation upon a computation-heavy pretrained model to select "important" filters, or to impose a hyperparameter-sensitive sparse constraint on the loss objective to regularize the network training. In this paper, we present a novel filter pruning method, dubbed dynamic-coded filter fusion (DCFF), to derive compact CNNs in a computation-economical and regularization-free manner for efficient image classification. Each filter in our DCFF is firstly given an inter-similarity distribution with a temperature parameter as a filter proxy, on top of which, a fresh Kullback-Leibler divergence based dynamic-coded criterion is proposed to evaluate the filter importance. In contrast to simply keeping high-score filters in other methods, we propose the concept of filter fusion, i.e., the weighted averages using the assigned proxies, as our preserved filters. We obtain a one-hot inter-similarity distribution as the temperature parameter approaches infinity. Thus, the relative importance of each filter can vary along with the training of the compact CNN, leading to dynamically changeable fused filters without both the dependency on the pretrained model and the introduction of sparse constraints. Extensive experiments on classification benchmarks demonstrate the superiority of our DCFF over the compared counterparts. For example, our DCFF derives a compact VGGNet-16 with only 72.77M FLOPs and 1.06M parameters while reaching top-1 accuracy of 93.47% on CIFAR-10. A compact ResNet-50 is obtained with 63.8% FLOPs and 58.6% parameter reductions, retaining 75.60% top-1 accuracy on ILSVRC-2012. Our code, narrower models and training logs are available at https://github.com/lmbxmu/DCFF.


1$\times$N Block Pattern for Network Sparsity

arXiv.org Artificial Intelligence

Though network sparsity emerges as a promising direction to overcome the drastically increasing size of neural networks, it remains an open problem to concurrently maintain model accuracy as well as achieve significant speedups on general CPUs. In this paper, we propose one novel concept of $1\times N$ block sparsity pattern (block pruning) to break this limitation. In particular, consecutive $N$ output kernels with the same input channel index are grouped into one block, which serves as a basic pruning granularity of our pruning pattern. Our $1 \times N$ sparsity pattern prunes these blocks considered unimportant. We also provide a workflow of filter rearrangement that first rearranges the weight matrix in the output channel dimension to derive more influential blocks for accuracy improvements, and then applies similar rearrangement to the next-layer weights in the input channel dimension to ensure correct convolutional operations. Moreover, the output computation after our $1 \times N$ block sparsity can be realized via a parallelized block-wise vectorized operation, leading to significant speedups on general CPUs-based platforms. The efficacy of our pruning pattern is proved with experiments on ILSVRC-2012. For example, in the case of 50% sparsity and $N=4$, our pattern obtains about 3.0% improvements over filter pruning in the top-1 accuracy of MobileNet-V2. Meanwhile, it obtains 56.04ms inference savings on Cortex-A7 CPU over weight pruning. Code is available at https://github.com/lmbxmu/1xN.


Towards Compact CNNs via Collaborative Compression

arXiv.org Artificial Intelligence

Channel pruning and tensor decomposition have received extensive attention in convolutional neural network compression. However, these two techniques are traditionally deployed in an isolated manner, leading to significant accuracy drop when pursuing high compression rates. In this paper, we propose a Collaborative Compression (CC) scheme, which joints channel pruning and tensor decomposition to compress CNN models by simultaneously learning the model sparsity and low-rankness. Specifically, we first investigate the compression sensitivity of each layer in the network, and then propose a Global Compression Rate Optimization that transforms the decision problem of compression rate into an optimization problem. After that, we propose multi-step heuristic compression to remove redundant compression units step-by-step, which fully considers the effect of the remaining compression space (i.e., unremoved compression units). Our method demonstrates superior performance gains over previous ones on various datasets and backbone architectures. For example, we achieve 52.9% FLOPs reduction by removing 48.4% parameters on ResNet-50 with only a Top-1 accuracy drop of 0.56% on ImageNet 2012.


DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning

arXiv.org Artificial Intelligence

While self-supervised representation learning (SSL) has received widespread attention from the community, recent research argue that its performance will suffer a cliff fall when the model size decreases. The current method mainly relies on contrastive learning to train the network and in this work, we propose a simple yet effective Distilled Contrastive Learning (DisCo) to ease the issue by a large margin. Specifically, we find the final embedding obtained by the mainstream SSL methods contains the most fruitful information, and propose to distill the final embedding to maximally transmit a teacher's knowledge to a lightweight model by constraining the last embedding of the student to be consistent with that of the teacher. In addition, in the experiment, we find that there exists a phenomenon termed Distilling BottleNeck and present to enlarge the embedding dimension to alleviate this problem. Our method does not introduce any extra parameter to lightweight models during deployment. Experimental results demonstrate that our method achieves the state-of-the-art on all lightweight models. Particularly, when ResNet-101/ResNet-50 is used as teacher to teach EfficientNet-B0, the linear result of EfficientNet-B0 on ImageNet is very close to ResNet-101/ResNet-50, but the number of parameters of EfficientNet-B0 is only 9.4%/16.3% of ResNet-101/ResNet-50.


SiMaN: Sign-to-Magnitude Network Binarization

arXiv.org Artificial Intelligence

Binary neural networks (BNNs) have attracted broad research interest due to their efficient storage and computational ability. Nevertheless, a significant challenge of BNNs lies in handling discrete constraints while ensuring bit entropy maximization, which typically makes their weight optimization very difficult. Existing methods relax the learning using the sign function, which simply encodes positive weights into +1s, and -1s otherwise. Alternatively, we formulate an angle alignment objective to constrain the weight binarization to {0,+1} to solve the challenge. In this paper, we show that our weight binarization provides an analytical solution by encoding high-magnitude weights into +1s, and 0s otherwise. Therefore, a high-quality discrete solution is established in a computationally efficient manner without the sign function. We prove that the learned weights of binarized networks roughly follow a Laplacian distribution that does not allow entropy maximization, and further demonstrate that it can be effectively solved by simply removing the $\ell_2$ regularization during network training. Our method, dubbed sign-to-magnitude network binarization (SiMaN), is evaluated on CIFAR-10 and ImageNet, demonstrating its superiority over the sign-based state-of-the-arts. Code is at https://github.com/lmbxmu/SiMaN.


Variational Structured Semantic Inference for Diverse Image Captioning

Neural Information Processing Systems

Despite the exciting progress in image captioning, generating diverse captions for a given image remains as an open problem. Existing methods typically apply generative models such as Variational Auto-Encoder to diversify the captions, which however neglect two key factors of diverse expression, i.e., the lexical diversity and the syntactic diversity. To model these two inherent diversities in image captioning, we propose a Variational Structured Semantic Inferring model (termed VSSI-cap) executed in a novel structured encoder-inferer-decoder schema. VSSI-cap mainly innovates in a novel structure, i.e., Variational Multi-modal Inferring tree (termed VarMI-tree). In particular, conditioned on the visual-textual features from the encoder, the VarMI-tree models the lexical and syntactic diversities by inferring their latent variables (with variations) in an approximate posterior inference guided by a visual semantic prior.


Information Competing Process for Learning Diversified Representations

arXiv.org Machine Learning

Learning representations with diversified information remains an open problem. Towards learning diversified representations, a new approach, termed Information Competing Process (ICP), is proposed in this paper. Aiming to enrich the information carried by feature representations, ICP separates a representation into two parts with different mutual information constraints. The separated parts are forced to accomplish the downstream task independently in a competitive environment which prevents the two parts from learning what each other learned for the downstream task. Such competing parts are then combined synergistically to complete the task. By fusing representation parts learned competitively under different conditions, ICP facilitates obtaining diversified representations which contain complementary information. Experiments on image classification and image reconstruction tasks demonstrate the great potential of ICP to learn discriminative and disentangled representations in both supervised and self-supervised learning settings.


Supervised Online Hashing via Similarity Distribution Learning

arXiv.org Artificial Intelligence

Hashing based visual search has attracted extensive research Online hashing has attracted extensive research attention attention in recent years due to the rapid growth of when facing streaming data. Most online hashing visual data on the Internet [7, 33, 8, 26, 12, 13, 30, 32, 25, methods, learning binary codes based on pairwise similarities 35, 27]. In various scenarios, online hashing has become of training instances, fail to capture the semantic relationship, a hot topic due to the emergence of handling the streaming and suffer from a poor generalization in largescale data, which aims to resolve an online retrieval task by applications due to large variations. In this paper, we updating the hash functions from sequentially arriving data propose to model the similarity distributions between the input instances. On one hand, online hashing takes advantages data and the hashing codes, upon which a novel supervised of traditional offline hashing methods, i.e., low storage cost online hashing method, dubbed as Similarity Distribution and efficiency of pairwise distance computation in the Hamming based Online Hashing (SDOH), is proposed, to keep space. On the other hand, it also merits in training the intrinsic semantic relationship in the produced Hamming efficiency and scalability for large-scale applications, since space. Specifically, we first transform the discrete the hash functions are updated instantly and solely based on similarity matrix into a probability matrix via a Gaussianbased the current streaming data, which is superior to traditional normalization to address the extremely imbalanced hashing methods based on a hashing model entirely trained distribution issue. And then, we introduce a scaling Student from scratch.


Hypergraph Neural Networks

arXiv.org Machine Learning

In this paper, we present a hypergraph neural networks (HGNN) framework for data representation learning, which can encode high-order data correlation in a hypergraph structure. Confronting the challenges of learning representation for complex data in real practice, we propose to incorporate such data structure in a hypergraph, which is more flexible on data modeling, especially when dealing with complex data. In this method, a hyperedge convolution operation is designed to handle the data correlation during representation learning. In this way, traditional hypergraph learning procedure can be conducted using hyperedge convolution operations efficiently. HGNN is able to learn the hidden layer representation considering the high-order data structure, which is a general framework considering the complex data correlations. We have conducted experiments on citation network classification and visual object recognition tasks and compared HGNN with graph convolutional networks and other traditional methods. Experimental results demonstrate that the proposed HGNN method outperforms recent state-of-the-art methods. We can also reveal from the results that the proposed HGNN is superior when dealing with multi-modal data compared with existing methods.