Plotting

 Ji, Rongrong


Dynamic Sparse No Training: Training-Free Fine-tuning for Sparse LLMs

arXiv.org Artificial Intelligence

The ever-increasing large language models (LLMs), though opening a potential path for the upcoming artificial general intelligence, sadly drops a daunting obstacle on the way towards their on-device deployment. As one of the most well-established pre-LLMs approaches in reducing model complexity, network pruning appears to lag behind in the era of LLMs, due mostly to its costly fine-tuning (or re-training) necessity under the massive volumes of model parameter and training data. To close this industry-academia gap, we introduce Dynamic Sparse No Training (DSnoT), a training-free fine-tuning approach that slightly updates sparse LLMs without the expensive backpropagation and any weight updates. Inspired by the Dynamic Sparse Training, DSnoT minimizes the reconstruction error between the dense and sparse LLMs, in the fashion of performing iterative weight pruning-and-growing on top of sparse LLMs. To accomplish this purpose, DSnoT particularly takes into account the anticipated reduction in reconstruction error for pruning and growing, as well as the variance w.r.t. different input data for growing each weight. This practice can be executed efficiently in linear time since its obviates the need of backpropagation for fine-tuning LLMs. Extensive experiments on LLaMA-V1/V2, Vicuna, and OPT across various benchmarks demonstrate the effectiveness of DSnoT in enhancing the performance of sparse LLMs, especially at high sparsity levels. For instance, DSnoT is able to outperform the state-of-the-art Wanda by 26.79 perplexity at 70% sparsity with LLaMA-7B. Our paper offers fresh insights into how to fine-tune sparse LLMs in an efficient training-free manner and open new venues to scale the great potential of sparsity to LLMs. Codes are available at https://github.com/zyxxmu/DSnoT.


CAPro: Webly Supervised Learning with Cross-Modality Aligned Prototypes

arXiv.org Artificial Intelligence

Webly supervised learning has attracted increasing attention for its effectiveness in exploring publicly accessible data at scale without manual annotation. However, most existing methods of learning with web datasets are faced with challenges from label noise, and they have limited assumptions on clean samples under various noise. For instance, web images retrieved with queries of tiger cat (a cat species) and drumstick (a musical instrument) are almost dominated by images of tigers and chickens, which exacerbates the challenge of fine-grained visual concept learning. In this case, exploiting both web images and their associated texts is a requisite solution to combat real-world noise. In this paper, we propose Cross-modality Aligned Prototypes (CAPro), a unified prototypical contrastive learning framework to learn visual representations with correct semantics. For one thing, we leverage textual prototypes, which stem from the distinct concept definition of classes, to select clean images by text matching and thus disambiguate the formation of visual prototypes. For another, to handle missing and mismatched noisy texts, we resort to the visual feature space to complete and enhance individual texts and thereafter improve text matching. Such semantically aligned visual prototypes are further polished up with high-quality samples, and engaged in both cluster regularization and noise removal. Besides, we propose collective bootstrapping to encourage smoother and wiser label reference from appearance-similar instances in a manner of dictionary look-up. Extensive experiments on WebVision1k and NUS-WIDE (Web) demonstrate that CAPro well handles realistic noise under both single-label and multi-label scenarios. CAPro achieves new state-of-the-art performance and exhibits robustness to open-set recognition. Codes are available at https://github.com/yuleiqin/capro.


DLIP: Distilling Language-Image Pre-training

arXiv.org Artificial Intelligence

Vision-Language Pre-training (VLP) shows remarkable progress with the assistance of extremely heavy parameters, which challenges deployment in real applications. Knowledge distillation is well recognized as the essential procedure in model compression. However, existing knowledge distillation techniques lack an in-depth investigation and analysis of VLP, and practical guidelines for VLP-oriented distillation are still not yet explored. In this paper, we present DLIP, a simple yet efficient Distilling Language-Image Pre-training framework, through which we investigate how to distill a light VLP model. Specifically, we dissect the model distillation from multiple dimensions, such as the architecture characteristics of different modules and the information transfer of different modalities. We conduct comprehensive experiments and provide insights on distilling a light but performant VLP model. Experimental results reveal that DLIP can achieve a state-of-the-art accuracy/efficiency trade-off across diverse cross-modal tasks, e.g., image-text retrieval, image captioning and visual question answering. For example, DLIP compresses BLIP by 1.9x, from 213M to 108M parameters, while achieving comparable or better performance. Furthermore, DLIP succeeds in retaining more than 95% of the performance with 22.4% parameters and 24.8% FLOPs compared to the teacher model and accelerates inference speed by 2.7x.


M3PS: End-to-End Multi-Grained Multi-Modal Attribute-Aware Product Summarization in E-commerce

arXiv.org Artificial Intelligence

Given the long textual product information and the product image, Multi-Modal Product Summarization (MMPS) aims to attract customers' interest and increase their desire to purchase by highlighting product characteristics with a short textual summary. Existing MMPS methods have achieved promising performance. Nevertheless, there still exist several problems: 1) lack end-to-end product summarization, 2) lack multi-grained multi-modal modeling, and 3) lack multi-modal attribute modeling. To address these issues, we propose an end-to-end multi-grained multi-modal attribute-aware product summarization method (M3PS) for generating high-quality product summaries in e-commerce. M3PS jointly models product attributes and generates product summaries. Meanwhile, we design several multi-grained multi-modal tasks to better guide the multi-modal learning of M3PS. Furthermore, we model product attributes based on both text and image modalities so that multi-modal product characteristics can be manifested in the generated summaries. Extensive experiments on a real large-scale Chinese e-commence dataset demonstrate that our model outperforms state-of-the-art product summarization methods w.r.t. several summarization metrics.


Systematic Investigation of Sparse Perturbed Sharpness-Aware Minimization Optimizer

arXiv.org Artificial Intelligence

Deep neural networks often suffer from poor generalization due to complex and non-convex loss landscapes. Sharpness-Aware Minimization (SAM) is a popular solution that smooths the loss landscape by minimizing the maximized change of training loss when adding a perturbation to the weight. However, indiscriminate perturbation of SAM on all parameters is suboptimal and results in excessive computation, double the overhead of common optimizers like Stochastic Gradient Descent (SGD). In this paper, we propose Sparse SAM (SSAM), an efficient and effective training scheme that achieves sparse perturbation by a binary mask. To obtain the sparse mask, we provide two solutions based on Fisher information and dynamic sparse training, respectively. We investigate the impact of different masks, including unstructured, structured, and $N$:$M$ structured patterns, as well as explicit and implicit forms of implementing sparse perturbation. We theoretically prove that SSAM can converge at the same rate as SAM, i.e., $O(\log T/\sqrt{T})$. Sparse SAM has the potential to accelerate training and smooth the loss landscape effectively. Extensive experimental results on CIFAR and ImageNet-1K confirm that our method is superior to SAM in terms of efficiency, and the performance is preserved or even improved with a perturbation of merely 50\% sparsity. Code is available at https://github.com/Mi-Peng/Systematic-Investigation-of-Sparse-Perturbed-Sharpness-Aware-Minimization-Optimizer.


CamoDiffusion: Camouflaged Object Detection via Conditional Diffusion Models

arXiv.org Artificial Intelligence

Camouflaged Object Detection (COD) is a challenging task in computer vision due to the high similarity between camouflaged objects and their surroundings. Existing COD methods primarily employ semantic segmentation, which suffers from overconfident incorrect predictions. In this paper, we propose a new paradigm that treats COD as a conditional mask-generation task leveraging diffusion models. Our method, dubbed CamoDiffusion, employs the denoising process of diffusion models to iteratively reduce the noise of the mask. Due to the stochastic sampling process of diffusion, our model is capable of sampling multiple possible predictions from the mask distribution, avoiding the problem of overconfident point estimation. Moreover, we develop specialized learning strategies that include an innovative ensemble approach for generating robust predictions and tailored forward diffusion methods for efficient training, specifically for the COD task. Extensive experiments on three COD datasets attest the superior performance of our model compared to existing state-of-the-art methods, particularly on the most challenging COD10K dataset, where our approach achieves 0.019 in terms of MAE.


DDPNAS: Efficient Neural Architecture Search via Dynamic Distribution Pruning

arXiv.org Artificial Intelligence

Neural Architecture Search (NAS) has demonstrated state-of-the-art performance on various computer vision tasks. Despite the superior performance achieved, the efficiency and generality of existing methods are highly valued due to their high computational complexity and low generality. In this paper, we propose an efficient and unified NAS framework termed DDPNAS via dynamic distribution pruning, facilitating a theoretical bound on accuracy and efficiency. In particular, we first sample architectures from a joint categorical distribution. Then the search space is dynamically pruned and its distribution is updated every few epochs. With the proposed efficient network generation method, we directly obtain the optimal neural architectures on given constraints, which is practical for on-device models across diverse search spaces and constraints. The architectures searched by our method achieve remarkable top-1 accuracies, 97.56 and 77.2 on CIFAR-10 and ImageNet (mobile settings), respectively, with the fastest search process, i.e., only 1.8 GPU hours on a Tesla V100. Codes for searching and network generation are available at: https://openi.pcl.ac.cn/PCL AutoML/XNAS.


Self-supervised Graph Representation Learning for Black Market Account Detection

arXiv.org Artificial Intelligence

Nowadays, Multi-purpose Messaging Mobile App (MMMA) has become increasingly prevalent. MMMAs attract fraudsters and some cybercriminals provide support for frauds via black market accounts (BMAs). Compared to fraudsters, BMAs are not directly involved in frauds and are more difficult to detect. This paper illustrates our BMA detection system SGRL (Self-supervised Graph Representation Learning) used in WeChat, a representative MMMA with over a billion users. We tailor Graph Neural Network and Graph Self-supervised Learning in SGRL for BMA detection. The workflow of SGRL contains a pretraining phase that utilizes structural information, node attribute information and available human knowledge, and a lightweight detection phase. In offline experiments, SGRL outperforms state-of-the-art methods by 16.06%-58.17% on offline evaluation measures. We deploy SGRL in the online environment to detect BMAs on the billion-scale WeChat graph, and it exceeds the alternative by 7.27% on the online evaluation measure. In conclusion, SGRL can alleviate label reliance, generalize well to unseen data, and effectively detect BMAs in WeChat.


OMPQ: Orthogonal Mixed Precision Quantization

arXiv.org Artificial Intelligence

To bridge the ever increasing gap between deep neural networks' complexity and hardware capability, network quantization has attracted more and more research attention. The latest trend of mixed precision quantization takes advantage of hardware's multiple bit-width arithmetic operations to unleash the full potential of network quantization. However, this also results in a difficult integer programming formulation, and forces most existing approaches to use an extremely time-consuming search process even with various relaxations. Instead of solving a problem of the original integer programming, we propose to optimize a proxy metric, the concept of network orthogonality, which is highly correlated with the loss of the integer programming but also easy to optimize with linear programming. This approach reduces the search time and required data amount by orders of magnitude, with little compromise on quantization accuracy. Specifically, we achieve 72.08% Top-1 accuracy on ResNet-18 with 6.7Mb, which does not require any searching iterations. Given the high efficiency and low data dependency of our algorithm, we used it for the post-training quantization, which achieve 71.27% Top-1 accuracy on MobileNetV2 with only 1.5Mb. Our code is available at https://github.com/MAC-AutoML/OMPQ.


Winning solutions and post-challenge analyses of the ChaLearn AutoDL challenge 2019

arXiv.org Artificial Intelligence

This paper reports the results and post-challenge analyses of ChaLearn's AutoDL challenge series, which helped sorting out a profusion of AutoML solutions for Deep Learning (DL) that had been introduced in a variety of settings, but lacked fair comparisons. All input data modalities (time series, images, videos, text, tabular) were formatted as tensors and all tasks were multi-label classification problems. Code submissions were executed on hidden tasks, with limited time and computational resources, pushing solutions that get results quickly. In this setting, DL methods dominated, though popular Neural Architecture Search (NAS) was impractical. Solutions relied on fine-tuned pre-trained networks, with architectures matching data modality. Post-challenge tests did not reveal improvements beyond the imposed time limit. While no component is particularly original or novel, a high level modular organization emerged featuring a "meta-learner", "data ingestor", "model selector", "model/learner", and "evaluator". This modularity enabled ablation studies, which revealed the importance of (off-platform) meta-learning, ensembling, and efficient data management. Experiments on heterogeneous module combinations further confirm the (local) optimality of the winning solutions. Our challenge legacy includes an ever-lasting benchmark (http://autodl.chalearn.org), the open-sourced code of the winners, and a free "AutoDL self-service".