Not enough data to create a plot.
Try a different view from the menu above.
Ji, Rongrong
TextDestroyer: A Training- and Annotation-Free Diffusion Method for Destroying Anomal Text from Images
Li, Mengcheng, Lin, Mingbao, Chao, Fei, Lin, Chia-Wen, Ji, Rongrong
In this paper, we propose TextDestroyer, the first training- and annotation-free method for scene text destruction using a pre-trained diffusion model. Existing scene text removal models require complex annotation and retraining, and may leave faint yet recognizable text information, compromising privacy protection and content concealment. TextDestroyer addresses these issues by employing a three-stage hierarchical process to obtain accurate text masks. Our method scrambles text areas in the latent start code using a Gaussian distribution before reconstruction. During the diffusion denoising process, self-attention key and value are referenced from the original latent to restore the compromised background. Latent codes saved at each inversion step are used for replacement during reconstruction, ensuring perfect background restoration. The advantages of TextDestroyer include: (1) it eliminates labor-intensive data annotation and resource-intensive training; (2) it achieves more thorough text destruction, preventing recognizable traces; and (3) it demonstrates better generalization capabilities, performing well on both real-world scenes and generated images.
AnySR: Realizing Image Super-Resolution as Any-Scale, Any-Resource
Zhan, Wengyi, Lin, Mingbao, Lin, Chia-Wen, Ji, Rongrong
In an effort to improve the efficiency and scalability of single-image super-resolution (SISR) applications, we introduce AnySR, to rebuild existing arbitrary-scale SR methods into any-scale, any-resource implementation. As a contrast to off-the-shelf methods that solve SR tasks across various scales with the same computing costs, our AnySR innovates in: 1) building arbitrary-scale tasks as any-resource implementation, reducing resource requirements for smaller scales without additional parameters; 2) enhancing any-scale performance in a feature-interweaving fashion, inserting scale pairs into features at regular intervals and ensuring correct feature/scale processing. The efficacy of our AnySR is fully demonstrated by rebuilding most existing arbitrary-scale SISR methods and validating on five popular SISR test datasets. The results show that our AnySR implements SISR tasks in a computing-more-efficient fashion, and performs on par with existing arbitrary-scale SISR methods. For the first time, we realize SISR tasks as not only any-scale in literature, but also as any-resource. Code is available at https://github.com/CrispyFeSo4/AnySR.
HRSAM: Efficiently Segment Anything in High-Resolution Images
Huang, You, Lai, Wenbin, Ji, Jiayi, Cao, Liujuan, Zhang, Shengchuan, Ji, Rongrong
The Segment Anything Model (SAM) has significantly advanced interactive segmentation but struggles with high-resolution images crucial for high-precision segmentation. This is primarily due to the quadratic space complexity of SAM-implemented attention and the length extrapolation issue in common global attention. This study proposes HRSAM that integrates Flash Attention and incorporates Plain, Shifted and newly proposed Cycle-scan Window (PSCWin) attention to address these issues. The shifted window attention is redesigned with padding to maintain consistent window sizes, enabling effective length extrapolation. The cycle-scan window attention adopts the recently developed State Space Models (SSMs) to ensure global information exchange with minimal computational overhead. Such window-based attention allows HRSAM to perform effective attention computations on scaled input images while maintaining low latency. Moreover, we further propose HRSAM++ that additionally employs a multi-scale strategy to enhance HRSAM's performance. The experiments on the high-precision segmentation datasets HQSeg44K and DAVIS show that high-resolution inputs enable the SAM-distilled HRSAM models to outperform the teacher model while maintaining lower latency. Compared to the SOTAs, HRSAM achieves a 1.56 improvement in interactive segmentation's NoC95 metric with only 31% of the latency. HRSAM++ further enhances the performance, achieving a 1.63 improvement in NoC95 with just 38% of the latency.
UIO-LLMs: Unbiased Incremental Optimization for Long-Context LLMs
Li, Wenhao, Lin, Mingbao, Zhong, Yunshan, Yan, Shuicheng, Ji, Rongrong
Managing long texts is challenging for large language models (LLMs) due to limited context window sizes. This study introduces UIO-LLMs, an unbiased incremental optimization approach for memory-enhanced transformers under long-context settings. We initially conceptualize the process as a streamlined encoder-decoder framework where the weights-shared encoder and decoder respectively encapsulate a context segment into memories and leverage these memories to predict outputs of the subsequent segment. Subsequently, by treating our memory-enhanced transformers as fully-connected recurrent neural networks (RNNs), we refine the training process using the Truncated Backpropagation Through Time (TBPTT) algorithm, which incorporates innovative incremental optimization techniques. These techniques not only diminish time complexity but also address the bias in gradient computation through an unbiased optimization process. UIO-LLMs successfully handle long context, such as extending the context window of Llama2-7b-chat from 4K to 100K tokens with minimal 2% additional parameters, while keeping the inference cost nearly linear as context length increases.
AnyTrans: Translate AnyText in the Image with Large Scale Models
Qian, Zhipeng, Zhang, Pei, Yang, Baosong, Fan, Kai, Ma, Yiwei, Wong, Derek F., Sun, Xiaoshuai, Ji, Rongrong
This paper introduces AnyTrans, an all-encompassing framework for the task-Translate AnyText in the Image (TATI), which includes multilingual text translation and text fusion within images. Our framework leverages the strengths of large-scale models, such as Large Language Models (LLMs) and text-guided diffusion models, to incorporate contextual cues from both textual and visual elements during translation. The few-shot learning capability of LLMs allows for the translation of fragmented texts by considering the overall context. Meanwhile, the advanced inpainting and editing abilities of diffusion models make it possible to fuse translated text seamlessly into the original image while preserving its style and realism. Additionally, our framework can be constructed entirely using open-source models and requires no training, making it highly accessible and easily expandable. To encourage advancement in the TATI task, we have meticulously compiled a test dataset called MTIT6, which consists of multilingual text image translation data from six language pairs.
Video-MME: The First-Ever Comprehensive Evaluation Benchmark of Multi-modal LLMs in Video Analysis
Fu, Chaoyou, Dai, Yuhan, Luo, Yongdong, Li, Lei, Ren, Shuhuai, Zhang, Renrui, Wang, Zihan, Zhou, Chenyu, Shen, Yunhang, Zhang, Mengdan, Chen, Peixian, Li, Yanwei, Lin, Shaohui, Zhao, Sirui, Li, Ke, Xu, Tong, Zheng, Xiawu, Chen, Enhong, Ji, Rongrong, Sun, Xing
In the quest for artificial general intelligence, Multi-modal Large Language Models (MLLMs) have emerged as a focal point in recent advancements. However, the predominant focus remains on developing their capabilities in static image understanding. The potential of MLLMs in processing sequential visual data is still insufficiently explored, highlighting the absence of a comprehensive, high-quality assessment of their performance. In this paper, we introduce Video-MME, the first-ever full-spectrum, Multi-Modal Evaluation benchmark of MLLMs in Video analysis. Our work distinguishes from existing benchmarks through four key features: 1) Diversity in video types, spanning 6 primary visual domains with 30 subfields to ensure broad scenario generalizability; 2) Duration in temporal dimension, encompassing both short-, medium-, and long-term videos, ranging from 11 seconds to 1 hour, for robust contextual dynamics; 3) Breadth in data modalities, integrating multi-modal inputs besides video frames, including subtitles and audios, to unveil the all-round capabilities of MLLMs; 4) Quality in annotations, utilizing rigorous manual labeling by expert annotators to facilitate precise and reliable model assessment. 900 videos with a total of 254 hours are manually selected and annotated by repeatedly viewing all the video content, resulting in 2,700 question-answer pairs. With Video-MME, we extensively evaluate various state-of-the-art MLLMs, including GPT-4 series and Gemini 1.5 Pro, as well as open-source image models like InternVL-Chat-V1.5 and video models like LLaVA-NeXT-Video. Our experiments reveal that Gemini 1.5 Pro is the best-performing commercial model, significantly outperforming the open-source models. Our dataset along with these findings underscores the need for further improvements in handling longer sequences and multi-modal data. Project Page: https://video-mme.github.io
VEGA: Learning Interleaved Image-Text Comprehension in Vision-Language Large Models
Zhou, Chenyu, Zhang, Mengdan, Chen, Peixian, Fu, Chaoyou, Shen, Yunhang, Zheng, Xiawu, Sun, Xing, Ji, Rongrong
The swift progress of Multi-modal Large Models (MLLMs) has showcased their impressive ability to tackle tasks blending vision and language. Yet, most current models and benchmarks cater to scenarios with a narrow scope of visual and textual contexts. These models often fall short when faced with complex comprehension tasks, which involve navigating through a plethora of irrelevant and potentially misleading information in both text and image forms. To bridge this gap, we introduce a new, more demanding task known as Interleaved Image-Text Comprehension (IITC). This task challenges models to discern and disregard superfluous elements in both images and text to accurately answer questions and to follow intricate instructions to pinpoint the relevant image. In support of this task, we further craft a new VEGA dataset, tailored for the IITC task on scientific content, and devised a subtask, Image-Text Association (ITA), to refine image-text correlation skills. Our evaluation of four leading closed-source models, as well as various open-source models using VEGA, underscores the rigorous nature of IITC. Even the most advanced models, such as Gemini-1.5-pro and GPT4V, only achieved modest success. By employing a multi-task, multi-scale post-training strategy, we have set a robust baseline for MLLMs on the IITC task, attaining an $85.8\%$ accuracy rate in image association and a $0.508$ Rouge score. These results validate the effectiveness of our dataset in improving MLLMs capabilities for nuanced image-text comprehension.
Not All Attention is Needed: Parameter and Computation Efficient Transfer Learning for Multi-modal Large Language Models
Wu, Qiong, Ye, Weihao, Zhou, Yiyi, Sun, Xiaoshuai, Ji, Rongrong
In this paper, we propose a novel parameter and computation efficient tuning method for Multi-modal Large Language Models (MLLMs), termed Efficient Attention Skipping (EAS). Concretely, we first reveal that multi-head attentions (MHAs), the main computational overhead of MLLMs, are often redundant to downstream tasks. Based on this observation, EAS evaluates the attention redundancy and skips the less important MHAs to speed up inference. Besides, we also propose a novel propagation-of-information adapter (PIA) to serve the attention skipping of EAS and keep parameter efficiency, which can be further re-parameterized into feed-forward networks (FFNs) for zero-extra latency. To validate EAS, we apply it to a recently proposed MLLM called LaVIN and a classic VL pre-trained model called METER, and conduct extensive experiments on a set of benchmarks. The experiments show that EAS not only retains high performance and parameter efficiency, but also greatly speeds up inference speed. For instance, LaVIN-EAS can obtain 89.98\% accuracy on ScineceQA while speeding up inference by 2.2 times to LaVIN
UniPTS: A Unified Framework for Proficient Post-Training Sparsity
Xie, Jingjing, Zhang, Yuxin, Lin, Mingbao, Lin, Zhihang, Cao, Liujuan, Ji, Rongrong
Post-training Sparsity (PTS) is a recently emerged avenue that chases efficient network sparsity with limited data in need. Existing PTS methods, however, undergo significant performance degradation compared with traditional methods that retrain the sparse networks via the whole dataset, especially at high sparsity ratios. In this paper, we attempt to reconcile this disparity by transposing three cardinal factors that profoundly alter the performance of conventional sparsity into the context of PTS. Our endeavors particularly comprise (1) A base-decayed sparsity objective that promotes efficient knowledge transferring from dense network to the sparse counterpart. (2) A reducing-regrowing search algorithm designed to ascertain the optimal sparsity distribution while circumventing overfitting to the small calibration set in PTS. (3) The employment of dynamic sparse training predicated on the preceding aspects, aimed at comprehensively optimizing the sparsity structure while ensuring training stability. Our proposed framework, termed UniPTS, is validated to be much superior to existing PTS methods across extensive benchmarks. As an illustration, it amplifies the performance of POT, a recently proposed recipe, from 3.9% to 68.6% when pruning ResNet-50 at 90% sparsity ratio on ImageNet. We release the code of our paper at https://github.com/xjjxmu/UniPTS.
Boosting Multimodal Large Language Models with Visual Tokens Withdrawal for Rapid Inference
Lin, Zhihang, Lin, Mingbao, Lin, Luxi, Ji, Rongrong
Multimodal large language models (MLLMs) demand considerable computations for inference due to the extensive parameters and the additional input tokens needed for visual information representation. Herein, we introduce Visual Tokens Withdrawal (VTW), a plug-and-play module to boost MLLMs for rapid inference. Our approach is inspired by two intriguing phenomena we have observed: (1) the attention sink phenomenon that is prevalent in LLMs also persists in MLLMs, suggesting that initial tokens and nearest tokens receive the majority of attention, while middle vision tokens garner minimal attention in deep layers; (2) the presence of information migration, which implies that visual information is transferred to subsequent text tokens within the first few layers of MLLMs. As per our findings, we conclude that vision tokens are not necessary in the deep layers of MLLMs. Thus, we strategically withdraw them at a certain layer, enabling only text tokens to engage in subsequent layers. To pinpoint the ideal layer for vision tokens withdrawal, we initially analyze a limited set of tiny datasets and choose the first layer that meets the Kullback-Leibler divergence criterion. Our VTW approach can cut computational overhead by over 40\% across diverse multimodal tasks while maintaining performance. Our code is released at https://github.com/lzhxmu/VTW.