Plotting

 Ji, Rongrong


CPPO: Accelerating the Training of Group Relative Policy Optimization-Based Reasoning Models

arXiv.org Artificial Intelligence

This paper introduces Completion Pruning Policy Optimization (CPPO) to accelerate the training of reasoning models based on Group Relative Policy Optimization (GRPO). GRPO, while effective, incurs high training costs due to the need for sampling multiple completions for each question. Our experiment and theoretical analysis reveals that the number of completions impacts model accuracy yet increases training time multiplicatively, and not all completions contribute equally to policy training -- their contribution depends on their relative advantage. To address these issues, we propose CPPO, which prunes completions with low absolute advantages, significantly reducing the number needed for gradient calculation and updates. Additionally, we introduce a dynamic completion allocation strategy to maximize GPU utilization by incorporating additional questions, further enhancing training efficiency. Experimental results demonstrate that CPPO achieves up to $8.32\times$ speedup on GSM8K and $3.51\times$ on Math while preserving or even enhancing the accuracy compared to the original GRPO. We release our code at https://github.com/lzhxmu/CPPO.


ComfyGPT: A Self-Optimizing Multi-Agent System for Comprehensive ComfyUI Workflow Generation

arXiv.org Artificial Intelligence

ComfyUI provides a widely-adopted, workflow-based interface that enables users to customize various image generation tasks through an intuitive node-based architecture. However, the intricate connections between nodes and diverse modules often present a steep learning curve for users. In this paper, we introduce ComfyGPT, the first self-optimizing multi-agent system designed to generate ComfyUI workflows based on task descriptions automatically. ComfyGPT comprises four specialized agents: ReformatAgent, FlowAgent, RefineAgent, and ExecuteAgent. The core innovation of ComfyGPT lies in two key aspects. First, it focuses on generating individual node links rather than entire workflows, significantly improving generation precision. Second, we proposed FlowAgent, a LLM-based workflow generation agent that uses both supervised fine-tuning (SFT) and reinforcement learning (RL) to improve workflow generation accuracy. Moreover, we introduce FlowDataset, a large-scale dataset containing 13,571 workflow-description pairs, and FlowBench, a comprehensive benchmark for evaluating workflow generation systems. We also propose four novel evaluation metrics: Format Validation (FV), Pass Accuracy (PA), Pass Instruct Alignment (PIA), and Pass Node Diversity (PND). Experimental results demonstrate that ComfyGPT significantly outperforms existing LLM-based methods in workflow generation.


LightMotion: A Light and Tuning-free Method for Simulating Camera Motion in Video Generation

arXiv.org Artificial Intelligence

Existing camera motion-controlled video generation methods face computational bottlenecks in fine-tuning and inference. This paper proposes LightMotion, a light and tuning-free method for simulating camera motion in video generation. Operating in the latent space, it eliminates additional fine-tuning, inpainting, and depth estimation, making it more streamlined than existing methods. The endeavors of this paper comprise: (i) The latent space permutation operation effectively simulates various camera motions like panning, zooming, and rotation. (ii) The latent space resampling strategy combines background-aware sampling and cross-frame alignment to accurately fill new perspectives while maintaining coherence across frames. (iii) Our in-depth analysis shows that the permutation and resampling cause an SNR shift in latent space, leading to poor-quality generation. To address this, we propose latent space correction, which reintroduces noise during denoising to mitigate SNR shift and enhance video generation quality. Exhaustive experiments show that our LightMotion outperforms existing methods, both quantitatively and qualitatively.


Dynamic Low-Rank Sparse Adaptation for Large Language Models

arXiv.org Artificial Intelligence

Applying Low-Rank Adaptation (LoRA) to fine-tune the sparse LLMs offers an intuitive approach to counter this predicament, while it holds shortcomings include: 1) The inability to integrate LoRA weights into sparse LLMs post-training, and 2) Insufficient performance recovery at high sparsity ratios. In this paper, we introduce dynamic Low-rank Sparse A daptation (LoSA), a novel method that seamlessly integrates low-rank adaptation into LLM sparsity within a unified framework, thereby enhancing the performance of sparse LLMs without increasing the inference latency. In particular, LoSA dynamically sparsifies the LoRA outcomes based on the corresponding sparse weights during fine-tuning, thus guaranteeing that the LoRA module can be integrated into the sparse LLMs post-training. Besides, LoSA leverages Representation Mutual Information (RMI) as an indicator to determine the importance of layers, thereby efficiently determining the layer-wise sparsity rates during fine-tuning. Predicated on this, LoSA adjusts the rank of the LoRA module based on the variability in layer-wise reconstruction errors, allocating an appropriate fine-tuning for each layer to reduce the output discrepancies between dense and sparse LLMs. Extensive experiments tell that LoSA can efficiently boost the efficacy of sparse LLMs within a few hours, without introducing any additional inferential burden. For example, LoSA reduced the perplexity of sparse LLaMA-2-7B by 68.73 and increased zero-shot accuracy by 16.32%, achieving a 2.60 speedup on CPU and 2.23 speedup on GPU, requiring only 45 minutes of fine-tuning on a single NVIDIA A100 80GB GPU. The development of large language models (LLMs) (Zhang et al., 2022; Touvron et al., 2023a;b) has marked substantial advancements in the field of natural language processing (Achiam et al., 2023). As the scale of these models increases, they demonstrate enhanced capabilities in understanding and generating across diverse contexts (Kaplan et al., 2020; Brown et al., 2020). Nevertheless, the exponential growth in model size presents formidable challenges for deployment and inference, primarily due to escalated computational demands and latency (Zhu et al., 2023). To mitigate these issues, a variety of model compression strategies have been developed. Additionally, LoRA weights cannot be merged into the sparse LLM weights. Moreover, LoSA dynamically determines the layer-wise sparsity rates based on representation mutual information and allocates the ranks of the low-rank adaptation according to the reconstruction errors of the sparse LLM. Among the diverse array of model compression techniques, sparsity emerges as a prominent method for diminishing both the size and computational demands of LLMs (Li et al., 2023b; Lu et al., 2024; Frantar & Alistarh, 2023; Sun et al., 2023).


Towards Efficient Automatic Self-Pruning of Large Language Models

arXiv.org Artificial Intelligence

Despite exceptional capabilities, Large Language Models (LLMs) still face deployment challenges due to their enormous size. Post-training structured pruning is a promising solution that prunes LLMs without the need for retraining, reducing computational overhead, and it is hardware-deployment friendly. However, the training-free nature of post-training structured pruning leads to significant performance degradation. We argue that the key to mitigating this issue lies in accurately determining the pruning rate for each layer. Meanwhile, we find that LLMs may have prior knowledge about their own redundancy. Based on this insight, we introduce $\textbf{Self-Pruner}$ an end-to-end automatic self-pruning framework for LLMs, which efficiently search layer-wise pruning rates. Specifically, $\textbf{Self-Pruner}$ leverages LLMs to autonomously execute the entire evolutionary search process to search for pruning rate configurations. In this process, LLMs are used to generate populations, select parent solutions from the current population, and perform crossover and mutation operations to produce offspring solutions. In this way, LLMs automatically generate and evaluate a large number of candidate solutions, effectively converging to find the pruning rate configurations with minimal human intervention. Extensive experiments demonstrate $\textbf{Self-Pruner}$'s better performance compared to existing state-of-the-art methods. Notably, $\textbf{Self-Pruner}$ prunes LLaMA-2-70B to 49B level with only 0.80$\%$ drop in accuracy across seven commonsense reasoning tasks, achieving a 1.39$\times$ speedup on NVIDIA A100 80GB GPU. Further pruning to 35B level resulted in only a 3.80$\%$ decrease in accuracy while obtaining a 1.70$\times$ speedup.


Determining Layer-wise Sparsity for Large Language Models Through a Theoretical Perspective

arXiv.org Artificial Intelligence

In this paper, we address the challenge of determining the layer-wise sparsity rates of large language models (LLMs) through a theoretical perspective. Specifically, we identify a critical issue of "reconstruction error explosion" in existing LLMs sparsification methods. This refers to the cumulative effect of reconstruction errors throughout the sparsification process, where errors from earlier layers propagate and amplify in subsequent layers. Through theoretical analysis, we derive a simple yet effective approach to layer-wise sparsity allocation that mitigates this issue. Our method uses a monotonically increasing arithmetic progression, reducing the process of determining sparsity rates for multiple layers to the determination of a single common difference hyperparameter. Remarkably, this allows for the optimal layer-wise sparsity rates to be identified with just a few trials. Both our theoretical analysis and experimental results demonstrate that this sparsity allocation scheme is near optimal. Extensive experiments show that our method significantly improves the performance of sparse LLMs across various architectures, outperforming existing layer-wise sparsity methods. Furthermore, it enhances the performance of various compression techniques and is applicable to vision and multimodal models. Notably, our method achieves a reduction of 52.10 in perplexity for the 70 % sparse LLaMA2-7B model obtained via Wanda, improves average zero-shot accuracy by 10.50 %, and delivers speedups of 2.63 and 2.23 on CPU and GPU, respectively. All methods face the problem of "reconstruction error explosion"; however, our method achieves lower reconstruction error compared to other methods. The metric-based method calculates the importance of each layer to obtain the sparsity rate. However, this method is heuris-tically designed by human experts and is not optimal. And the search-based method requires a large number of iterative searches, which is time-consuming.


SVFR: A Unified Framework for Generalized Video Face Restoration

arXiv.org Artificial Intelligence

Face Restoration (FR) is a crucial area within image and video processing, focusing on reconstructing high-quality portraits from degraded inputs. Despite advancements in image FR, video FR remains relatively under-explored, primarily due to challenges related to temporal consistency, motion artifacts, and the limited availability of high-quality video data. Moreover, traditional face restoration typically prioritizes enhancing resolution and may not give as much consideration to related tasks such as facial colorization and inpainting. In this paper, we propose a novel approach for the Generalized Video Face Restoration (GVFR) task, which integrates video BFR, inpainting, and colorization tasks that we empirically show to benefit each other. We present a unified framework, termed as stable video face restoration (SVFR), which leverages the generative and motion priors of Stable Video Diffusion (SVD) and incorporates task-specific information through a unified face restoration framework. A learnable task embedding is introduced to enhance task identification. Meanwhile, a novel Unified Latent Regularization (ULR) is employed to encourage the shared feature representation learning among different subtasks. To further enhance the restoration quality and temporal stability, we introduce the facial prior learning and the self-referred refinement as auxiliary strategies used for both training and inference. The proposed framework effectively combines the complementary strengths of these tasks, enhancing temporal coherence and achieving superior restoration quality. This work advances the state-of-the-art in video FR and establishes a new paradigm for generalized video face restoration. Code and video demo are available at https://github.com/wangzhiyaoo/SVFR.git.


Video-RAG: Visually-aligned Retrieval-Augmented Long Video Comprehension

arXiv.org Artificial Intelligence

Existing large video-language models (LVLMs) struggle to comprehend long videos correctly due to limited context. To address this problem, fine-tuning long-context LVLMs and employing GPT-based agents have emerged as promising solutions. However, fine-tuning LVLMs would require extensive high-quality data and substantial GPU resources, while GPT-based agents would rely on proprietary models (e.g., GPT-4o). In this paper, we propose Video Retrieval-Augmented Generation (Video-RAG), a training-free and cost-effective pipeline that employs visually-aligned auxiliary texts to help facilitate cross-modality alignment while providing additional information beyond the visual content. Specifically, we leverage open-source external tools to extract visually-aligned information from pure video data (e.g., audio, optical character, and object detection), and incorporate the extracted information into an existing LVLM as auxiliary texts, alongside video frames and queries, in a plug-and-play manner. Our Video-RAG offers several key advantages: (i) lightweight with low computing overhead due to single-turn retrieval; (ii) easy implementation and compatibility with any LVLM; and (iii) significant, consistent performance gains across long video understanding benchmarks, including Video-MME, MLVU, and LongVideoBench. Notably, our model demonstrates superior performance over proprietary models like Gemini-1.5-Pro and GPT-4o when utilized with a 72B model.


AccDiffusion v2: Towards More Accurate Higher-Resolution Diffusion Extrapolation

arXiv.org Artificial Intelligence

Diffusion models suffer severe object repetition and local distortion when the inference resolution differs from its pre-trained resolution. We propose AccDiffusion v2, an accurate method for patch-wise higher-resolution diffusion extrapolation without training. Our in-depth analysis in this paper shows that using an identical text prompt for different patches leads to repetitive generation, while the absence of a prompt undermines image details. In response, our AccDiffusion v2 novelly decouples the vanilla image-content-aware prompt into a set of patch-content-aware prompts, each of which serves as a more precise description of a patch. Further analysis reveals that local distortion arises from inaccurate descriptions in prompts about the local structure of higher-resolution images. To address this issue, AccDiffusion v2, for the first time, introduces an auxiliary local structural information through ControlNet during higher-resolution diffusion extrapolation aiming to mitigate the local distortions. Finally, our analysis indicates that global semantic information is conducive to suppressing both repetitive generation and local distortion. Hence, our AccDiffusion v2 further proposes dilated sampling with window interaction for better global semantic information during higher-resolution diffusion extrapolation. We conduct extensive experiments, including both quantitative and qualitative comparisons, to demonstrate the efficacy of our AccDiffusion v2. The quantitative comparison shows that AccDiffusion v2 achieves state-of-the-art performance in image generation extrapolation without training. The qualitative comparison intuitively illustrates that AccDiffusion v2 effectively suppresses the issues of repetitive generation and local distortion in image generation extrapolation. Our code is available at \url{https://github.com/lzhxmu/AccDiffusion_v2}.


Accelerating Multimodal Large Language Models via Dynamic Visual-Token Exit and the Empirical Findings

arXiv.org Artificial Intelligence

The excessive use of visual tokens in existing Multimoal Large Language Models (MLLMs) often exhibits obvious redundancy and brings in prohibitively expensive computation. To gain insights into this problem, we first conduct extensive empirical studies on the attention behaviors of MLLMs, and summarize three main inference stages in MLLMs: (i) Early fusion between tokens is first accomplished quickly. (ii) Intra-modality modeling then comes to play. (iii) Multimodal reasoning} resumes and lasts until the end of inference. In particular, we reveal that visual tokens will stop contributing to reasoning when the text tokens receive enough image information, yielding obvious visual redundancy. Based on these generalized observations, we propose a simple yet effective method to improve the efficiency of MLLMs, termed dynamic visual-token exit (DyVTE). DyVTE uses lightweight hyper-networks to perceive the text token status and decide the removal of all visual tokens after a certain layer, thereby addressing the observed visual redundancy. To validate VTE, we apply it to a set of MLLMs, including LLaVA, VILA, Eagle and InternVL, and conduct extensive experiments on a bunch of benchmarks. The experiment results not only show the effectiveness of our VTE in improving MLLMs' efficiency, but also yield the general modeling patterns of MLLMs, well facilitating the in-depth understanding of MLLMs. Our code is anonymously released at https://github.com/DoubtedSteam/DyVTE.