Well File:

 Jerry Zhu


Adversarial Attacks on Stochastic Bandits

Neural Information Processing Systems

We study adversarial attacks that manipulate the reward signals to control the actions chosen by a stochastic multi-armed bandit algorithm. We propose the first attack against two popular bandit algorithms: -greedy and UCB, without knowledge of the mean rewards. The attacker is able to spend only logarithmic effort, multiplied by a problem-specific parameter that becomes smaller as the bandit problem gets easier to attack. The result means the attacker can easily hijack the behavior of the bandit algorithm to promote or obstruct certain actions, say, a particular medical treatment. As bandits are seeing increasingly wide use in practice, our study exposes a significant security threat.


Adversarial Attacks on Stochastic Bandits

Neural Information Processing Systems

We study adversarial attacks that manipulate the reward signals to control the actions chosen by a stochastic multi-armed bandit algorithm. We propose the first attack against two popular bandit algorithms: -greedy and UCB, without knowledge of the mean rewards. The attacker is able to spend only logarithmic effort, multiplied by a problem-specific parameter that becomes smaller as the bandit problem gets easier to attack. The result means the attacker can easily hijack the behavior of the bandit algorithm to promote or obstruct certain actions, say, a particular medical treatment. As bandits are seeing increasingly wide use in practice, our study exposes a significant security threat.




Transduction with Matrix Completion: Three Birds with One Stone

Neural Information Processing Systems

We pose transductive classification as a matrix completion problem. By assuming the underlying matrix has a low rank, our formulation is able to handle three problems simultaneously: i) multi-label learning, where each item has more than one label, ii) transduction, where most of these labels are unspecified, and iii) missing data, where a large number of features are missing. We obtained satisfactory results on several real-world tasks, suggesting that the low rank assumption may not be as restrictive as it seems. Our method allows for different loss functions to apply on the feature and label entries of the matrix. The resulting nuclear norm minimization problem is solved with a modified fixed-point continuation method that is guaranteed to find the global optimum.




Policy Poisoning in Batch Reinforcement Learning and Control

Neural Information Processing Systems

We study a security threat to batch reinforcement learning and control where the attacker aims to poison the learned policy. The victim is a reinforcement learner / controller which first estimates the dynamics and the rewards from a batch data set, and then solves for the optimal policy with respect to the estimates. The attacker can modify the data set slightly before learning happens, and wants to force the learner into learning a target policy chosen by the attacker. We present a unified framework for solving batch policy poisoning attacks, and instantiate the attack on two standard victims: tabular certainty equivalence learner in reinforcement learning and linear quadratic regulator in control. We show that both instantiation result in a convex optimization problem on which global optimality is guaranteed, and provide analysis on attack feasibility and attack cost. Experiments show the effectiveness of policy poisoning attacks.


Active Learning with Oracle Epiphany

Neural Information Processing Systems

We present a theoretical analysis of active learning with more realistic interactions with human oracles. Previous empirical studies have shown oracles abstaining on difficult queries until accumulating enough information to make label decisions. We formalize this phenomenon with an "oracle epiphany model" and analyze active learning query complexity under such oracles for both the realizable and the agnostic cases. Our analysis shows that active learning is possible with oracle epiphany, but incurs an additional cost depending on when the epiphany happens. Our results suggest new, principled active learning approaches with realistic oracles.