Goto

Collaborating Authors

 Jenatton, Rodolphe


Network Flow Algorithms for Structured Sparsity

arXiv.org Machine Learning

We consider a class of learning problems that involve a structured sparsity-inducing norm defined as the sum of $\ell_\infty$-norms over groups of variables. Whereas a lot of effort has been put in developing fast optimization methods when the groups are disjoint or embedded in a specific hierarchical structure, we address here the case of general overlapping groups. To this end, we show that the corresponding optimization problem is related to network flow optimization. More precisely, the proximal problem associated with the norm we consider is dual to a quadratic min-cost flow problem. We propose an efficient procedure which computes its solution exactly in polynomial time. Our algorithm scales up to millions of variables, and opens up a whole new range of applications for structured sparse models. We present several experiments on image and video data, demonstrating the applicability and scalability of our approach for various problems.


Structured Variable Selection with Sparsity-Inducing Norms

arXiv.org Machine Learning

We consider the empirical risk minimization problem for linear supervised learning, with regularization by structured sparsity-inducing norms. These are defined as sums of Euclidean norms on certain subsets of variables, extending the usual $\ell_1$-norm and the group $\ell_1$-norm by allowing the subsets to overlap. This leads to a specific set of allowed nonzero patterns for the solutions of such problems. We first explore the relationship between the groups defining the norm and the resulting nonzero patterns, providing both forward and backward algorithms to go back and forth from groups to patterns. This allows the design of norms adapted to specific prior knowledge expressed in terms of nonzero patterns. We also present an efficient active set algorithm, and analyze the consistency of variable selection for least-squares linear regression in low and high-dimensional settings.


Structured Sparse Principal Component Analysis

arXiv.org Machine Learning

We present an extension of sparse PCA, or sparse dictionary learning, where the sparsity patterns of all dictionary elements are structured and constrained to belong to a prespecified set of shapes. This \emph{structured sparse PCA} is based on a structured regularization recently introduced by [1]. While classical sparse priors only deal with \textit{cardinality}, the regularization we use encodes higher-order information about the data. We propose an efficient and simple optimization procedure to solve this problem. Experiments with two practical tasks, face recognition and the study of the dynamics of a protein complex, demonstrate the benefits of the proposed structured approach over unstructured approaches.