Jascha Sohl-Dickstein


Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent

Neural Information Processing Systems

A longstanding goal in deep learning research has been to precisely characterize training and generalization. However, the often complex loss landscapes of neural networks have made a theory of learning dynamics elusive. In this work, we show that for wide neural networks the learning dynamics simplify considerably and that, in the infinite width limit, they are governed by a linear model obtained from the first-order Taylor expansion of the network around its initial parameters. Furthermore, mirroring the correspondence between wide Bayesian neural networks and Gaussian processes, gradient-based training of wide neural networks with a squared loss produces test set predictions drawn from a Gaussian process with a particular compositional kernel. While these theoretical results are only exact in the infinite width limit, we nevertheless find excellent empirical agreement between the predictions of the original network and those of the linearized version even for finite practically-sized networks. This agreement is robust across different architectures, optimization methods, and loss functions.




Invertible Convolutional Flow

Neural Information Processing Systems

Normalizing flows can be used to construct high quality generative probabilistic models, but training and sample generation require repeated evaluation of Jacobian determinants and function inverses. To make such computations feasible, current approaches employ highly constrained architectures that produce diagonal, triangular, or low rank Jacobian matrices. As an alternative, we investigate a set of novel normalizing flows based on the circular and symmetric convolutions. We show that these transforms admit efficient Jacobian determinant computation and inverse mapping (deconvolution) in O(N logN) time. Additionally, element-wise multiplication, widely used in normalizing flow architectures, can be combined with these transforms to increase modeling flexibility. We further propose an analytic approach to designing nonlinear elementwise bijectors that induce special properties in the intermediate layers, by implicitly introducing specific regularizers in the loss. We show that these transforms allow more effective normalizing flow models to be developed for generative image models.


Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent

Neural Information Processing Systems

A longstanding goal in deep learning research has been to precisely characterize training and generalization. However, the often complex loss landscapes of neural networks have made a theory of learning dynamics elusive. In this work, we show that for wide neural networks the learning dynamics simplify considerably and that, in the infinite width limit, they are governed by a linear model obtained from the first-order Taylor expansion of the network around its initial parameters. Furthermore, mirroring the correspondence between wide Bayesian neural networks and Gaussian processes, gradient-based training of wide neural networks with a squared loss produces test set predictions drawn from a Gaussian process with a particular compositional kernel. While these theoretical results are only exact in the infinite width limit, we nevertheless find excellent empirical agreement between the predictions of the original network and those of the linearized version even for finite practically-sized networks. This agreement is robust across different architectures, optimization methods, and loss functions.


Exponential expressivity in deep neural networks through transient chaos

Neural Information Processing Systems

We combine Riemannian geometry with the mean field theory of high dimensional chaos to study the nature of signal propagation in generic, deep neural networks with random weights. Our results reveal an order-to-chaos expressivity phase transition, with networks in the chaotic phase computing nonlinear functions whose global curvature grows exponentially with depth but not width. We prove this generic class of deep random functions cannot be efficiently computed by any shallow network, going beyond prior work restricted to the analysis of single functions. Moreover, we formalize and quantitatively demonstrate the long conjectured idea that deep networks can disentangle highly curved manifolds in input space into flat manifolds in hidden space. Our theoretical analysis of the expressive power of deep networks broadly applies to arbitrary nonlinearities, and provides a quantitative underpinning for previously abstract notions about the geometry of deep functions.


REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models

Neural Information Processing Systems

Learning in models with discrete latent variables is challenging due to high variance gradient estimators. Generally, approaches have relied on control variates to reduce the variance of the REINFORCE estimator. Recent work (Jang et al., 2016; Maddison et al., 2016) has taken a different approach, introducing a continuous relaxation of discrete variables to produce low-variance, but biased, gradient estimates. In this work, we combine the two approaches through a novel control variate that produces low-variance, unbiased gradient estimates. Then, we introduce a modification to the continuous relaxation and show that the tightness of the relaxation can be adapted online, removing it as a hyperparameter. We show state-of-the-art variance reduction on several benchmark generative modeling tasks, generally leading to faster convergence to a better final log-likelihood.


SVCCA: Singular Vector Canonical Correlation Analysis for Deep Learning Dynamics and Interpretability

Neural Information Processing Systems

We propose a new technique, Singular Vector Canonical Correlation Analysis (SVCCA), a tool for quickly comparing two representations in a way that is both invariant to affine transform (allowing comparison between different layers and networks) and fast to compute (allowing more comparisons to be calculated than with previous methods). We deploy this tool to measure the intrinsic dimensionality of layers, showing in some cases needless over-parameterization; to probe learning dynamics throughout training, finding that networks converge to final representations from the bottom up; to show where class-specific information in networks is formed; and to suggest new training regimes that simultaneously save computation and overfit less.


Adversarial Examples that Fool both Computer Vision and Time-Limited Humans

Neural Information Processing Systems

Machine learning models are vulnerable to adversarial examples: small changes to images can cause computer vision models to make mistakes such as identifying a school bus as an ostrich. However, it is still an open question whether humans are prone to similar mistakes. Here, we address this question by leveraging recent techniques that transfer adversarial examples from computer vision models with known parameters and architecture to other models with unknown parameters and architecture, and by matching the initial processing of the human visual system. We find that adversarial examples that strongly transfer across computer vision models influence the classifications made by time-limited human observers.


PCA of high dimensional random walks with comparison to neural network training

Neural Information Processing Systems

One technique to visualize the training of neural networks is to perform PCA on the parameters over the course of training and to project to the subspace spanned by the first few PCA components. In this paper we compare this technique to the PCA of a high dimensional random walk. We compute the eigenvalues and eigenvectors of the covariance of the trajectory and prove that in the long trajectory and high dimensional limit most of the variance is in the first few PCA components, and that the projection of the trajectory onto any subspace spanned by PCA components is a Lissajous curve. We generalize these results to a random walk with momentum and to an Ornstein-Uhlenbeck processes (i.e., a random walk in a quadratic potential) and show that in high dimensions the walk is not mean reverting, but will instead be trapped at a fixed distance from the minimum. We finally analyze PCA projected training trajectories for: a linear model trained on CIFAR-10; a fully connected model trained on MNIST; and ResNet-50-v2 trained on Imagenet. In all cases, both the distribution of PCA eigenvalues and the projected trajectories resemble those of a random walk with drift.