Goto

Collaborating Authors

 Janowicz, Krzysztof


Philosophical Foundations of GeoAI: Exploring Sustainability, Diversity, and Bias in GeoAI and Spatial Data Science

arXiv.org Artificial Intelligence

This chapter presents some of the fundamental assumptions and principles that could form the philosophical foundation of GeoAI and spatial data science. Instead of reviewing the well-established characteristics of spatial data (analysis), including interaction, neighborhoods, and autocorrelation, the chapter highlights themes such as sustainability, bias in training data, diversity in schema knowledge, and the (potential lack of) neutrality of GeoAI systems from a unifying ethical perspective. Reflecting on our profession's ethical implications will assist us in conducting potentially disruptive research more responsibly, identifying pitfalls in designing, training, and deploying GeoAI-based systems, and developing a shared understanding of the benefits but also potential dangers of artificial intelligence and machine learning research across academic fields, all while sharing our unique (geo)spatial perspective with others.


Towards General-Purpose Representation Learning of Polygonal Geometries

arXiv.org Artificial Intelligence

Neural network representation learning for spatial data is a common need for geographic artificial intelligence (GeoAI) problems. In recent years, many advancements have been made in representation learning for points, polylines, and networks, whereas little progress has been made for polygons, especially complex polygonal geometries. In this work, we focus on developing a general-purpose polygon encoding model, which can encode a polygonal geometry (with or without holes, single or multipolygons) into an embedding space. The result embeddings can be leveraged directly (or finetuned) for downstream tasks such as shape classification, spatial relation prediction, and so on. To achieve model generalizability guarantees, we identify a few desirable properties: loop origin invariance, trivial vertex invariance, part permutation invariance, and topology awareness. We explore two different designs for the encoder: one derives all representations in the spatial domain; the other leverages spectral domain representations. For the spatial domain approach, we propose ResNet1D, a 1D CNN-based polygon encoder, which uses circular padding to achieve loop origin invariance on simple polygons. For the spectral domain approach, we develop NUFTspec based on Non-Uniform Fourier Transformation (NUFT), which naturally satisfies all the desired properties. We conduct experiments on two tasks: 1) shape classification based on MNIST; 2) spatial relation prediction based on two new datasets - DBSR-46K and DBSR-cplx46K. Our results show that NUFTspec and ResNet1D outperform multiple existing baselines with significant margins. While ResNet1D suffers from model performance degradation after shape-invariance geometry modifications, NUFTspec is very robust to these modifications due to the nature of the NUFT.


Sphere2Vec: Multi-Scale Representation Learning over a Spherical Surface for Geospatial Predictions

arXiv.org Artificial Intelligence

Generating learning-friendly representations for points in a 2D space is a fundamental and long-standing problem in machine learning. Recently, multi-scale encoding schemes (such as Space2Vec) were proposed to directly encode any point in 2D space as a high-dimensional vector, and has been successfully applied to various (geo)spatial prediction tasks. However, a map projection distortion problem rises when applying location encoding models to large-scale real-world GPS coordinate datasets (e.g., species images taken all over the world) - all current location encoding models are designed for encoding points in a 2D (Euclidean) space but not on a spherical surface, e.g., earth surface. To solve this problem, we propose a multi-scale location encoding model called Sphere2V ec which directly encodes point coordinates on a spherical surface while avoiding the mapprojection distortion problem. We provide theoretical proof that the Sphere2Vec encoding preserves the spherical surface distance between any two points. We also developed a unified view of distance-reserving encoding on spheres based on the Double Fourier Sphere (DFS). We apply Sphere2V ec to the geo-aware image classification task. Our analysis shows that Sphere2V ec outperforms other 2D space location encoder models especially on the polar regions and data-sparse areas for image classification tasks because of its nature for spherical surface distance preservation.


Geographic Question Answering: Challenges, Uniqueness, Classification, and Future Directions

arXiv.org Artificial Intelligence

As an important part of Artificial Intelligence (AI), Question Answering (QA) aims at generating answers to questions phrased in natural language. While there has been substantial progress in open-domain question answering, QA systems are still struggling to answer questions which involve geographic entities or concepts and that require spatial operations. In this paper, we discuss the problem of geographic question answering (GeoQA). We first investigate the reasons why geographic questions are difficult to answer by analyzing challenges of geographic questions. We discuss the uniqueness of geographic questions compared to general QA. Then we review existing work on GeoQA and classify them by the types of questions they can address. Based on this survey, we provide a generic classification framework for geographic questions. Finally, we conclude our work by pointing out unique future research directions for GeoQA.


TransGCN:Coupling Transformation Assumptions with Graph Convolutional Networks for Link Prediction

arXiv.org Machine Learning

Link prediction is an important and frequently studied task that contributes to an understanding of the structure of knowledge graphs (KGs) in statistical relational learning. Inspired by the success of graph convolutional networks (GCN) in modeling graph data, we propose a unified GCN framework, named TransGCN, to address this task, in which relation and entity embeddings are learned simultaneously. To handle heterogeneous relations in KGs, we introduce a novel way of representing heterogeneous neighborhood by introducing transformation assumptions on the relationship between the subject, the relation, and the object of a triple. Specifically, a relation is treated as a transformation operator transforming a head entity to a tail entity. Both translation assumption in TransE and rotation assumption in RotatE are explored in our framework. Additionally, instead of only learning entity embeddings in the convolution-based encoder while learning relation embeddings in the decoder as done by the state-of-art models, e.g., R-GCN, the TransGCN framework trains relation embeddings and entity embeddings simultaneously during the graph convolution operation, thus having fewer parameters compared with R-GCN. Experiments show that our models outperform the-state-of-arts methods on both FB15K-237 and WN18RR.


Contextual Graph Attention for Answering Logical Queries over Incomplete Knowledge Graphs

arXiv.org Artificial Intelligence

Recently, several studies have explored methods for using KG embedding to answer logical queries. These approaches either treat embedding learning and query answering as two separated learning tasks, or fail to deal with the variability of contributions from different query paths. We proposed to leverage a graph attention mechanism to handle the unequal contribution of different query paths. However, commonly used graph attention assumes that the center node embedding is provided, which is unavailable in this task since the center node is to be predicted. To solve this problem we propose a multi-head attention-based end-to-end logical query answering model, called Contextual Graph Attention model(CGA), which uses an initial neighborhood aggregation layer to generate the center embedding, and the whole model is trained jointly on the original KG structure as well as the sampled query-answer pairs. We also introduce two new datasets, DB18 and WikiGeo19, which are rather large in size compared to the existing datasets and contain many more relation types, and use them to evaluate the performance of the proposed model. Our result shows that the proposed CGA with fewer learnable parameters consistently outperforms the baseline models on both datasets as well as Bio dataset.


POIReviewQA: A Semantically Enriched POI Retrieval and Question Answering Dataset

arXiv.org Artificial Intelligence

Many services that perform information retrieval for Points of Interest (POI) utilize a Lucene-based setup with spatial filtering. While this type of system is easy to implement it does not make use of semantics but relies on direct word matches between a query and reviews leading to a loss in both precision and recall. To study the challenging task of semantically enriching POIs from unstructured data in order to support open-domain search and question answering (QA), we introduce a new dataset POIReviewQA. It consists of 20k questions (e.g."is this restaurant dog friendly?") for 1022 Yelp business types. For each question we sampled 10 reviews, and annotated each sentence in the reviews whether it answers the question and what the corresponding answer is. To test a system's ability to understand the text we adopt an information retrieval evaluation by ranking all the review sentences for a question based on the likelihood that they answer this question. We build a Lucene-based baseline model, which achieves 77.0% AUC and 48.8% MAP. A sentence embedding-based model achieves 79.2% AUC and 41.8% MAP, indicating that the dataset presents a challenging problem for future research by the GIR community. The result technology can help exploit the thematic content of web documents and social media for characterisation of locations.


SOSA: A Lightweight Ontology for Sensors, Observations, Samples, and Actuators

arXiv.org Artificial Intelligence

The Sensor, Observation, Sample, and Actuator (SOSA) ontology provides a formal but lightweight general-purpose specification for modeling the interaction between the entities involved in the acts of observation, actuation, and sampling. SOSA is the result of rethinking the W3C-XG Semantic Sensor Network (SSN) ontology based on changes in scope and target audience, technical developments, and lessons learned over the past years. SOSA also acts as a replacement of SSN's Stimulus Sensor Observation (SSO) core. It has been developed by the first joint working group of the Open Geospatial Consortium (OGC) and the World Wide Web Consortium (W3C) on \emph{Spatial Data on the Web}. In this work, we motivate the need for SOSA, provide an overview of the main classes and properties, and briefly discuss its integration with the new release of the SSN ontology as well as various other alignments to specifications such as OGC's Observations and Measurements (O\&M), Dolce-Ultralite (DUL), and other prominent ontologies. We will also touch upon common modeling problems and application areas related to publishing and searching observation, sampling, and actuation data on the Web. The SOSA ontology and standard can be accessed at \url{https://www.w3.org/TR/vocab-ssn/}.


Why the Data Train Needs Semantic Rails

AI Magazine

While catchphrases such as big data, smart data, data-intensive science, or smart dust highlight different aspects, they share a common theme: Namely, a shift towards a data-centric perspective in which the synthesis and analysis of data at an ever-increasing spatial, temporal, and thematic resolution promises new insights, while, at the same time, reducing the need for strong domain theories as starting points. In terms of the envisioned methodologies, those catchphrases tend to emphasize the role of predictive analytics, that is, statistical techniques including data mining and machine learning, as well as supercomputing. Interestingly, however, while this perspective takes the availability of data as a given, it does not answer the question how one would discover the required data in today’s chaotic information universe, how one would understand which datasets can be meaningfully integrated, and how to communicate the results to humans and machines alike. The semantic web addresses these questions. In the following, we argue why the data train needs semantic rails. We point out that making sense of data and gaining new insights works best if inductive and deductive techniques go hand-in-hand instead of competing over the prerogative of interpretation.


Semantics for Big Data

AI Magazine

We can easily understand linked data as being a part of the greater big data landscape, as many of the challenges are the same (Hitzler and Janowicz 2013). The linking component of linked data, however, puts an additional focus on the integration and conflation of data across multiple sources.