Well File:
- Well Planning ( results)
- Shallow Hazard Analysis ( results)
- Well Plat ( results)
- Wellbore Schematic ( results)
- Directional Survey ( results)
- Fluid Sample ( results)
- Log ( results)
- Density ( results)
- Gamma Ray ( results)
- Mud ( results)
- Resistivity ( results)
- Report ( results)
- Daily Report ( results)
- End of Well Report ( results)
- Well Completion Report ( results)
- Rock Sample ( results)
James Thewlis
Modelling and unsupervised learning of symmetric deformable object categories
James Thewlis, Hakan Bilen, Andrea Vedaldi
We propose a new approach to model and learn, without manual supervision, the symmetries of natural objects, such as faces or flowers, given only images as input. It is well known that objects that have a symmetric structure do not usually result in symmetric images due to articulation and perspective effects. This is often tackled by seeking the intrinsic symmetries of the underlying 3D shape, which is very difficult to do when the latter cannot be recovered reliably from data. We show that, if only raw images are given, it is possible to look instead for symmetries in the space of object deformations. We can then learn symmetries from an unstructured collection of images of the object as an extension of the recently-introduced object frame representation, modified so that object symmetries reduce to the obvious symmetry groups in the normalized space. We also show that our formulation provides an explanation of the ambiguities that arise in recovering the pose of symmetric objects from their shape or images and we provide a way of discounting such ambiguities in learning.
Unsupervised learning of object frames by dense equivariant image labelling
James Thewlis, Hakan Bilen, Andrea Vedaldi
One of the key challenges of visual perception is to extract abstract models of 3D objects and object categories from visual measurements, which are affected by complex nuisance factors such as viewpoint, occlusion, motion, and deformations. Starting from the recent idea of viewpoint factorization, we propose a new approach that, given a large number of images of an object and no other supervision, can extract a dense object-centric coordinate frame. This coordinate frame is invariant to deformations of the images and comes with a dense equivariant labelling neural network that can map image pixels to their corresponding object coordinates. We demonstrate the applicability of this method to simple articulated objects and deformable objects such as human faces, learning embeddings from random synthetic transformations or optical flow correspondences, all without any manual supervision.