Goto

Collaborating Authors

 Jameel, Shoaib


Few-shot Image Classification with Multi-Facet Prototypes

arXiv.org Artificial Intelligence

The aim of few-shot learning (FSL) is to learn how to recognize image categories from a small number of training examples. A central challenge is that the available training examples are normally insufficient to determine which visual features are most characteristic of the considered categories. To address this challenge, we organize these visual features into facets, which intuitively group features of the same kind (e.g. features that are relevant to shape, color, or texture). This is motivated from the assumption that (i) the importance of each facet differs from category to category and (ii) it is possible to predict facet importance from a pre-trained embedding of the category names. In particular, we propose an adaptive similarity measure, relying on predicted facet importance weights for a given set of categories. This measure can be used in combination with a wide array of existing metric-based methods. Experiments on miniImageNet and CUB show that our approach improves the state-of-the-art in metric-based FSL.


Entity Embeddings with Conceptual Subspaces as a Basis for Plausible Reasoning

arXiv.org Artificial Intelligence

Conceptual spaces are geometric representations of conceptual knowledge, in which entities correspond to points, natural properties correspond to convex regions, and the dimensions of the space correspond to salient features. While conceptual spaces enable elegant models of various cognitive phenomena, the lack of automated methods for constructing such representations have so far limited their application in artificial intelligence. To address this issue, we propose a method which learns a vector-space embedding of entities from Wikipedia and constrains this embedding such that entities of the same semantic type are located in some lower-dimensional subspace. We experimentally demonstrate the usefulness of these subspaces as (approximate) conceptual space representations by showing, among others, that important features can be modelled as directions and that natural properties tend to correspond to convex regions.


Inductive Reasoning about Ontologies Using Conceptual Spaces

AAAI Conferences

Structured knowledge about concepts plays an increasingly important role in areas such as information retrieval. The available ontologies and knowledge graphs that encode such conceptual knowledge, however, are inevitably incomplete. This observation has led to a number of methods that aim to automatically complete existing knowledge bases. Unfortunately, most existing approaches rely on black box models, e.g. formulated as global optimization problems, which makes it difficult to support the underlying reasoning process with intuitive explanations. In this paper, we propose a new method for knowledge base completion, which uses interpretable conceptual space representations and an explicit model for inductive inference that is closer to human forms of commonsense reasoning. Moreover, by separating the task of representation learning from inductive reasoning, our method is easier to apply in a wider variety of contexts. Finally, unlike optimization based approaches, our method can naturally be applied in settings where various logical constraints between the extensions of concepts need to be taken into account.