Jaitly, Navdeep
More Speaking or More Speakers?
Berrebbi, Dan, Collobert, Ronan, Jaitly, Navdeep, Likhomanenko, Tatiana
Self-training (ST) and self-supervised learning (SSL) methods have demonstrated strong improvements in automatic speech recognition (ASR). In spite of these advances, to the best of our knowledge, there is no analysis of how the composition of the labelled and unlabelled datasets used in these methods affects the results. In this work we aim to analyse the effect of number of speakers in the training data on a recent SSL algorithm (wav2vec 2.0), and a recent ST algorithm (slimIPL). We perform a systematic analysis on both labeled and unlabeled data by varying the number of speakers while keeping the number of hours fixed and vice versa. Our findings suggest that SSL requires a large amount of unlabeled data to produce high accuracy results, while ST requires a sufficient number of speakers in the labelled data, especially in the low-regime setting. In this manner these two approaches improve supervised learning in different regimes of data composition.
Continuous Soft Pseudo-Labeling in ASR
Likhomanenko, Tatiana, Collobert, Ronan, Jaitly, Navdeep, Bengio, Samy
Continuous pseudo-labeling (PL) algorithms such as slimIPL have recently emerged as a powerful strategy for semi-supervised learning in speech recognition. In contrast with earlier strategies that alternated between training a model and generating pseudo-labels (PLs) with it, here PLs are generated in end-to-end manner as training proceeds, improving training speed and the accuracy of the final model. PL shares a common theme with teacher-student models such as distillation in that a teacher model generates targets that need to be mimicked by the student model being trained. However, interestingly, PL strategies in general use hard-labels, whereas distillation uses the distribution over labels as the target to mimic. Inspired by distillation we expect that specifying the whole distribution (aka soft-labels) over sequences as the target for unlabeled data, instead of a single best pass pseudo-labeled transcript (hard-labels) should improve PL performance and convergence. Surprisingly and unexpectedly, we find that soft-labels targets can lead to training divergence, with the model collapsing to a degenerate token distribution per frame. We hypothesize that the reason this does not happen with hard-labels is that training loss on hard-labels imposes sequence-level consistency that keeps the model from collapsing to the degenerate solution. In this paper, we show several experiments that support this hypothesis, and experiment with several regularization approaches that can ameliorate the degenerate collapse when using soft-labels. These approaches can bring the accuracy of soft-labels closer to that of hard-labels, and while they are unable to outperform them yet, they serve as a useful framework for further improvements.
Understanding the Robustness of Multi-Exit Models under Common Corruptions
Mehra, Akshay, Seto, Skyler, Jaitly, Navdeep, Theobald, Barry-John
Multi-Exit models (MEMs) use an early-exit strategy to improve the accuracy and efficiency of deep neural networks (DNNs) by allowing samples to exit the network before the last layer. However, the effectiveness of MEMs in the presence of distribution shifts remains largely unexplored. Our work examines how distribution shifts generated by common image corruptions affect the accuracy/efficiency of MEMs. We find that under common corruptions, early-exiting at the first correct exit reduces the inference cost and provides a significant boost in accuracy ( 10%) over exiting at the last layer. However, with realistic early-exit strategies, which do not assume knowledge about the correct exits, MEMs still reduce inference cost but provide a marginal improvement in accuracy ( 1%) compared to exiting at the last layer. Moreover, the presence of distribution shift widens the gap between an MEM's maximum classification accuracy and realistic early-exit strategies by 5% on average compared with the gap on in-distribution data. Our empirical analysis shows that the lack of calibration due to a distribution shift increases the susceptibility of such early-exit strategies to exit early and increases misclassification rates. Furthermore, the lack of calibration increases the inconsistency in the predictions of the model across exits, leading to both inefficient inference and more misclassifications compared with evaluation on in-distribution data. Finally, we propose two metrics, underthinking and overthinking, that quantify the different behavior of practical early-exit strategy under distribution shifts, and provide insights into improving the practical utility of MEMs.
Lingvo: a Modular and Scalable Framework for Sequence-to-Sequence Modeling
Shen, Jonathan, Nguyen, Patrick, Wu, Yonghui, Chen, Zhifeng, Chen, Mia X., Jia, Ye, Kannan, Anjuli, Sainath, Tara, Cao, Yuan, Chiu, Chung-Cheng, He, Yanzhang, Chorowski, Jan, Hinsu, Smit, Laurenzo, Stella, Qin, James, Firat, Orhan, Macherey, Wolfgang, Gupta, Suyog, Bapna, Ankur, Zhang, Shuyuan, Pang, Ruoming, Weiss, Ron J., Prabhavalkar, Rohit, Liang, Qiao, Jacob, Benoit, Liang, Bowen, Lee, HyoukJoong, Chelba, Ciprian, Jean, Sรฉbastien, Li, Bo, Johnson, Melvin, Anil, Rohan, Tibrewal, Rajat, Liu, Xiaobing, Eriguchi, Akiko, Jaitly, Navdeep, Ari, Naveen, Cherry, Colin, Haghani, Parisa, Good, Otavio, Cheng, Youlong, Alvarez, Raziel, Caswell, Isaac, Hsu, Wei-Ning, Yang, Zongheng, Wang, Kuan-Chieh, Gonina, Ekaterina, Tomanek, Katrin, Vanik, Ben, Wu, Zelin, Jones, Llion, Schuster, Mike, Huang, Yanping, Chen, Dehao, Irie, Kazuki, Foster, George, Richardson, John, Macherey, Klaus, Bruguier, Antoine, Zen, Heiga, Raffel, Colin, Kumar, Shankar, Rao, Kanishka, Rybach, David, Murray, Matthew, Peddinti, Vijayaditya, Krikun, Maxim, Bacchiani, Michiel A. U., Jablin, Thomas B., Suderman, Rob, Williams, Ian, Lee, Benjamin, Bhatia, Deepti, Carlson, Justin, Yavuz, Semih, Zhang, Yu, McGraw, Ian, Galkin, Max, Ge, Qi, Pundak, Golan, Whipkey, Chad, Wang, Todd, Alon, Uri, Lepikhin, Dmitry, Tian, Ye, Sabour, Sara, Chan, William, Toshniwal, Shubham, Liao, Baohua, Nirschl, Michael, Rondon, Pat
Lingvo is a Tensorflow framework offering a complete solution for collaborative deep learning research, with a particular focus towards sequence-to-sequence models. Lingvo models are composed of modular building blocks that are flexible and easily extensible, and experiment configurations are centralized and highly customizable. Distributed training and quantized inference are supported directly within the framework, and it contains existing implementations of a large number of utilities, helper functions, and the newest research ideas. Lingvo has been used in collaboration by dozens of researchers in more than 20 papers over the last two years. This document outlines the underlying design of Lingvo and serves as an introduction to the various pieces of the framework, while also offering examples of advanced features that showcase the capabilities of the framework.
Peptide-Spectra Matching from Weak Supervision
Schoenholz, Samuel S., Hackett, Sean, Deming, Laura, Melamud, Eugene, Jaitly, Navdeep, McAllister, Fiona, O'Brien, Jonathon, Dahl, George, Bennett, Bryson, Dai, Andrew M., Koller, Daphne
As in many other scientific domains, we face a fundamental problem when using machine learning to identify proteins from mass spectrometry data: large ground truth datasets mapping inputs to correct outputs are extremely difficult to obtain. Instead, we have access to imperfect hand-coded models crafted by domain experts. In this paper, we apply deep neural networks to an important step of the protein identification problem, the pairing of mass spectra with short sequences of amino acids called peptides. We train our model to differentiate between top scoring results from a state-of-the art classical system and hard-negative second and third place results. Our resulting model is much better at identifying peptides with spectra than the model used to generate its training data. In particular, we achieve a 43% improvement over standard matching methods and a 10% improvement over a combination of the matching method and an industry standard cross-spectra reranking tool. Importantly, in a more difficult experimental regime that reflects current challenges facing biologists, our advantage over the previous state-of-the-art grows to 15% even after reranking. We believe this approach will generalize to other challenging scientific problems.
State-of-the-art Speech Recognition With Sequence-to-Sequence Models
Chiu, Chung-Cheng, Sainath, Tara N., Wu, Yonghui, Prabhavalkar, Rohit, Nguyen, Patrick, Chen, Zhifeng, Kannan, Anjuli, Weiss, Ron J., Rao, Kanishka, Gonina, Ekaterina, Jaitly, Navdeep, Li, Bo, Chorowski, Jan, Bacchiani, Michiel
Attention-based encoder-decoder architectures such as Listen, Attend, and Spell (LAS), subsume the acoustic, pronunciation and language model components of a traditional automatic speech recognition (ASR) system into a single neural network. In previous work, we have shown that such architectures are comparable to state-of-theart ASR systems on dictation tasks, but it was not clear if such architectures would be practical for more challenging tasks such as voice search. In this work, we explore a variety of structural and optimization improvements to our LAS model which significantly improve performance. On the structural side, we show that word piece models can be used instead of graphemes. We also introduce a multi-head attention architecture, which offers improvements over the commonly-used single-head attention. On the optimization side, we explore synchronous training, scheduled sampling, label smoothing, and minimum word error rate optimization, which are all shown to improve accuracy. We present results with a unidirectional LSTM encoder for streaming recognition. On a 12, 500 hour voice search task, we find that the proposed changes improve the WER from 9.2% to 5.6%, while the best conventional system achieves 6.7%; on a dictation task our model achieves a WER of 4.1% compared to 5% for the conventional system.
Speech recognition for medical conversations
Chiu, Chung-Cheng, Tripathi, Anshuman, Chou, Katherine, Co, Chris, Jaitly, Navdeep, Jaunzeikare, Diana, Kannan, Anjuli, Nguyen, Patrick, Sak, Hasim, Sankar, Ananth, Tansuwan, Justin, Wan, Nathan, Wu, Yonghui, Zhang, Xuedong
In this paper we document our experiences with developing speech recognition for medical transcription - a system that automatically transcribes doctor-patient conversations. Towards this goal, we built a system along two different methodological lines - a Connectionist Temporal Classification (CTC) phoneme based model and a Listen Attend and Spell (LAS) grapheme based model. To train these models we used a corpus of anonymized conversations representing approximately 14,000 hours of speech. Because of noisy transcripts and alignments in the corpus, a significant amount of effort was invested in data cleaning issues. We describe a two-stage strategy we followed for segmenting the data. The data cleanup and development of a matched language model was essential to the success of the CTC based models. The LAS based models, however were found to be resilient to alignment and transcript noise and did not require the use of language models. CTC models were able to achieve a word error rate of 20.1%, and the LAS models were able to achieve 18.3%. Our analysis shows that both models perform well on important medical utterances and therefore can be practical for transcribing medical conversations.
Learning Hard Alignments with Variational Inference
Lawson, Dieterich, Chiu, Chung-Cheng, Tucker, George, Raffel, Colin, Swersky, Kevin, Jaitly, Navdeep
There has recently been significant interest in hard attention models for tasks such as object recognition, visual captioning and speech recognition. Hard attention can offer benefits over soft attention such as decreased computational cost, but training hard attention models can be difficult because of the discrete latent variables they introduce. Previous work used REINFORCE and Q-learning to approach these issues, but those methods can provide high-variance gradient estimates and be slow to train. In this paper, we tackle the problem of learning hard attention for a sequential task using variational inference methods, specifically the recently introduced VIMCO and NVIL. Furthermore, we propose a novel baseline that adapts VIMCO to this setting. We demonstrate our method on a phoneme recognition task in clean and noisy environments and show that our method outperforms REINFORCE, with the difference being greater for a more complicated task.
An online sequence-to-sequence model for noisy speech recognition
Chiu, Chung-Cheng, Lawson, Dieterich, Luo, Yuping, Tucker, George, Swersky, Kevin, Sutskever, Ilya, Jaitly, Navdeep
Generative models have long been the dominant approach for speech recognition. The success of these models however relies on the use of sophisticated recipes and complicated machinery that is not easily accessible to non-practitioners. Recent innovations in Deep Learning have given rise to an alternative - discriminative models called Sequence-to-Sequence models, that can almost match the accuracy of state of the art generative models. While these models are easy to train as they can be trained end-to-end in a single step, they have a practical limitation that they can only be used for offline recognition. This is because the models require that the entirety of the input sequence be available at the beginning of inference, an assumption that is not valid for instantaneous speech recognition. To address this problem, online sequence-to-sequence models were recently introduced. These models are able to start producing outputs as data arrives, and the model feels confident enough to output partial transcripts. These models, like sequence-to-sequence are causal - the output produced by the model until any time, $t$, affects the features that are computed subsequently. This makes the model inherently more powerful than generative models that are unable to change features that are computed from the data. This paper highlights two main contributions - an improvement to online sequence-to-sequence model training, and its application to noisy settings with mixed speech from two speakers.
Sequence-to-Sequence Models Can Directly Translate Foreign Speech
Weiss, Ron J., Chorowski, Jan, Jaitly, Navdeep, Wu, Yonghui, Chen, Zhifeng
We present a recurrent encoder-decoder deep neural network architecture that directly translates speech in one language into text in another. The model does not explicitly transcribe the speech into text in the source language, nor does it require supervision from the ground truth source language transcription during training. We apply a slightly modified sequence-to-sequence with attention architecture that has previously been used for speech recognition and show that it can be repurposed for this more complex task, illustrating the power of attention-based models. A single model trained end-to-end obtains state-of-the-art performance on the Fisher Callhome Spanish-English speech translation task, outperforming a cascade of independently trained sequence-to-sequence speech recognition and machine translation models by 1.8 BLEU points on the Fisher test set. In addition, we find that making use of the training data in both languages by multi-task training sequence-to-sequence speech translation and recognition models with a shared encoder network can improve performance by a further 1.4 BLEU points.