Plotting

 Jaiswal, Abhishek


Benchmarking Reliability of Deep Learning Models for Pathological Gait Classification

arXiv.org Artificial Intelligence

Early detection of neurodegenerative disorders is an important open problem, since early diagnosis and treatment may yield a better prognosis. Researchers have recently sought to leverage advances in machine learning algorithms to detect symptoms of altered gait, possibly corresponding to the emergence of neurodegenerative etiologies. However, while several claims of positive and accurate detection have been made in the recent literature, using a variety of sensors and algorithms, solutions are far from being realized in practice. This paper analyzes existing approaches to identify gaps inhibiting translation. Using a set of experiments across three Kinect-simulated and one real Parkinson's patient datasets, we highlight possible sources of errors and generalization failures in these approaches. Based on these observations, we propose our strong baseline called Asynchronous Multi-Stream Graph Convolutional Network (AMS-GCN) that can reliably differentiate multiple categories of pathological gaits across datasets.


Learning to Play Video Games with Intuitive Physics Priors

arXiv.org Artificial Intelligence

Video game playing is an extremely structured domain where algorithmic decision-making can be tested without adverse real-world consequences. While prevailing methods rely on image inputs to avoid the problem of hand-crafting state space representations, this approach systematically diverges from the way humans actually learn to play games. In this paper, we design object-based input representations that generalize well across a number of video games. Using these representations, we evaluate an agent's ability to learn games similar to an infant - with limited world experience, employing simple inductive biases derived from intuitive representations of physics from the real world. Using such biases, we construct an object category representation to be used by a Q-learning algorithm and assess how well it learns to play multiple games based on observed object affordances. Our results suggest that a human-like object interaction setup capably learns to play several video games, and demonstrates superior generalizability, particularly for unfamiliar objects. Further exploring such methods will allow machines to learn in a human-centric way, thus incorporating more human-like learning benefits.


Using Learnable Physics for Real-Time Exercise Form Recommendations

arXiv.org Artificial Intelligence

Good posture and form are essential for safe and productive exercising. Even in gym settings, trainers may not be readily available for feedback. Rehabilitation therapies and fitness workouts can thus benefit from recommender systems that provide real-time evaluation. In this paper, we present an algorithmic pipeline that can diagnose problems in exercise techniques and offer corrective recommendations, with high sensitivity and specificity in real-time. We use MediaPipe for pose recognition, count repetitions using peak-prominence detection, and use a learnable physics simulator to track motion evolution for each exercise. A test video is diagnosed based on deviations from the prototypical learned motion using statistical learning. The system is evaluated on six full and upper body exercises. These real-time recommendations, counseled via low-cost equipment like smartphones, will allow exercisers to rectify potential mistakes making self-practice feasible while reducing the risk of workout injuries.