Well File:

 Jaime Carbonell




XLNet: Generalized Autoregressive Pretraining for Language Understanding

Neural Information Processing Systems

With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation.


Adaptive Smoothed Online Multi-Task Learning

Neural Information Processing Systems

This paper addresses the challenge of jointly learning both the per-task model parameters and the inter-task relationships in a multi-task online learning setting. The proposed algorithm features probabilistic interpretation, efficient updating rules and flexible modulation on whether learners focus on their specific task or on jointly address all tasks. The paper also proves a sub-linear regret bound as compared to the best linear predictor in hindsight. Experiments over three multitask learning benchmark datasets show advantageous performance of the proposed approach over several state-of-the-art online multi-task learning baselines.


Active Learning from Peers

Neural Information Processing Systems

This paper addresses the challenge of learning from peers in an online multitask setting. Instead of always requesting a label from a human oracle, the proposed method first determines if the learner for each task can acquire that label with sufficient confidence from its peers either as a task-similarity weighted sum, or from the single most similar task. If so, it saves the oracle query for later use in more difficult cases, and if not it queries the human oracle. The paper develops the new algorithm to exhibit this behavior and proves a theoretical mistake bound for the method compared to the best linear predictor in hindsight. Experiments over three multitask learning benchmark datasets show clearly superior performance over baselines such as assuming task independence, learning only from the oracle and not learning from peer tasks.