Plotting

 Jaillet, Patrick


Regret based Robust Solutions for Uncertain Markov Decision Processes

Neural Information Processing Systems

In this paper, we seek robust policies for uncertain Markov Decision Processes (MDPs). Most robust optimization approaches for these problems have focussed on the computation of {\em maximin} policies which maximize the value corresponding to the worst realization of the uncertainty. Recent work has proposed {\em minimax} regret as a suitable alternative to the {\em maximin} objective for robust optimization. However, existing algorithms for handling {\em minimax} regret are restricted to models with uncertainty over rewards only. We provide algorithms that employ sampling to improve across multiple dimensions: (a) Handle uncertainties over both transition and reward models; (b) Dependence of model uncertainties across state, action pairs and decision epochs; (c) Scalability and quality bounds. Finally, to demonstrate the empirical effectiveness of our sampling approaches, we provide comparisons against benchmark algorithms on two domains from literature. We also provide a Sample Average Approximation (SAA) analysis to compute a posteriori error bounds.


Decentralized Data Fusion and Active Sensing with Mobile Sensors for Modeling and Predicting Spatiotemporal Traffic Phenomena

arXiv.org Artificial Intelligence

The problem of modeling and predicting spatiotemporal traffic phenomena over an urban road network is important to many traffic applications such as detecting and forecasting congestion hotspots. This paper presents a decentralized data fusion and active sensing (D2FAS) algorithm for mobile sensors to actively explore the road network to gather and assimilate the most informative data for predicting the traffic phenomenon. We analyze the time and communication complexity of D2FAS and demonstrate that it can scale well with a large number of observations and sensors. We provide a theoretical guarantee on its predictive performance to be equivalent to that of a sophisticated centralized sparse approximation for the Gaussian process (GP) model: The computation of such a sparse approximate GP model can thus be parallelized and distributed among the mobile sensors (in a Google-like MapReduce paradigm), thereby achieving efficient and scalable prediction. We also theoretically guarantee its active sensing performance that improves under various practical environmental conditions. Empirical evaluation on real-world urban road network data shows that our D2FAS algorithm is significantly more time-efficient and scalable than state-of-the-art centralized algorithms while achieving comparable predictive performance.