Goto

Collaborating Authors

 Jaggi, Martin


Learning from History for Byzantine Robust Optimization

arXiv.org Machine Learning

Byzantine robustness has received significant attention recently given its importance for distributed and federated learning. In spite of this, we identify severe flaws in existing algorithms even when the data across the participants is assumed to be identical. First, we show that most existing robust aggregation rules may not converge even in the absence of any Byzantine attackers, because they are overly sensitive to the distribution of the noise in the stochastic gradients. Secondly, we show that even if the aggregation rules may succeed in limiting the influence of the attackers in a single round, the attackers can couple their attacks across time eventually leading to divergence. To address these issues, we present two surprisingly simple strategies: a new iterative clipping procedure, and incorporating worker momentum to overcome time-coupled attacks. This is the first provably robust method for the standard stochastic non-convex optimization setting.


Taming GANs with Lookahead-Minmax

arXiv.org Machine Learning

Generative Adversarial Networks are notoriously challenging to train. The underlying minmax optimization is highly susceptible to the variance of the stochastic gradient and the rotational component of the associated game vector field. To tackle these challenges, we propose the Lookahead algorithm for minmax optimization, originally developed for single objective minimization only. The backtracking step of our Lookahead-minmax naturally handles the rotational game dynamics, a property which was identified to be key for enabling gradient ascent descent methods to converge on challenging examples often analyzed in the literature. Moreover, it implicitly handles high variance without using large mini-batches, known to be essential for reaching state of the art performance. Experimental results on MNIST, SVHN, CIFAR-10, and ImageNet demonstrate a clear advantage of combining Lookahead-minmax with Adam or extragradient, in terms of performance and improved stability, for negligible memory and computational cost. Using 30-fold fewer parameters and 16-fold smaller minibatches we outperform the reported performance of the class-dependent BigGAN on CIFAR-10 by obtaining FID of 12.19 without using the class labels, bringing state-of-the-art GAN training within reach of common computational resources.


Ensemble Distillation for Robust Model Fusion in Federated Learning

arXiv.org Machine Learning

Federated Learning (FL) is a machine learning setting where many devices collaboratively train a machine learning model while keeping the training data decentralized. In most of the current training schemes the central model is refined by averaging the parameters of the server model and the updated parameters from the client side. However, directly averaging model parameters is only possible if all models have the same structure and size, which could be a restrictive constraint in many scenarios. In this work we investigate more powerful and more flexible aggregation schemes for FL. Specifically, we propose ensemble distillation for model fusion, i.e. training the central classifier through unlabeled data on the outputs of the models from the clients. This knowledge distillation technique mitigates privacy risk and cost to the same extent as the baseline FL algorithms, but allows flexible aggregation over heterogeneous client models that can differ e.g. in size, numerical precision or structure. We show in extensive empirical experiments on various CV/NLP datasets (CIFAR-10/100, ImageNet, AG News, SST2) and settings (heterogeneous models/data) that the server model can be trained much faster, requiring fewer communication rounds than any existing FL technique so far.


PowerGossip: Practical Low-Rank Communication Compression in Decentralized Deep Learning

arXiv.org Machine Learning

Lossy gradient compression has become a practical tool to overcome the communication bottleneck in centrally coordinated distributed training of machine learning models. However, algorithms for decentralized training with compressed communication over arbitrary connected networks have been more complicated, requiring additional memory and hyperparameters. We introduce a simple algorithm that directly compresses the model differences between neighboring workers using low-rank linear compressors applied on model differences. Inspired by the PowerSGD algorithm for centralized deep learning, this algorithm uses power iteration steps to maximize the information transferred per bit. We prove that our method requires no additional hyperparameters, converges faster than prior methods, and is asymptotically independent of both the network and the compression. Out of the box, these compressors perform on par with state-of-the-art tuned compression algorithms in a series of deep learning benchmarks.


Secure Byzantine-Robust Machine Learning

arXiv.org Machine Learning

Increasingly machine learning systems are being deployed to edge servers and devices (e.g. mobile phones) and trained in a collaborative manner. Such distributed/federated/decentralized training raises a number of concerns about the robustness, privacy, and security of the procedure. While extensive work has been done in tackling with robustness, privacy, or security individually, their combination has rarely been studied. In this paper, we propose a secure two-server protocol that offers both input privacy and Byzantine-robustness. In addition, this protocol is communication-efficient, fault-tolerant and enjoys local differential privacy.


Sparse Communication for Training Deep Networks

arXiv.org Machine Learning

Synchronous stochastic gradient descent (SGD) is the most common method used for distributed training of deep learning models. In this algorithm, each worker shares its local gradients with others and updates the parameters using the average gradients of all workers. Although distributed training reduces the computation time, the communication overhead associated with the gradient exchange forms a scalability bottleneck for the algorithm. There are many compression techniques proposed to reduce the number of gradients that needs to be communicated. However, compressing the gradients introduces yet another overhead to the problem. In this work, we study several compression schemes and identify how three key parameters affect the performance. We also provide a set of insights on how to increase performance and introduce a simple sparsification scheme, random-block sparsification, that reduces communication while keeping the performance close to standard SGD.


Mime: Mimicking Centralized Stochastic Algorithms in Federated Learning

arXiv.org Machine Learning

Federated learning is a challenging optimization problem due to the heterogeneity of the data across different clients. Such heterogeneity has been observed to induce client drift and significantly degrade the performance of algorithms designed for this setting. In contrast, centralized learning with centrally collected data does not experience such drift, and has seen great empirical and theoretical progress with innovations such as momentum, adaptivity, etc. In this work, we propose a general framework Mime which mitigates client-drift and adapts arbitrary centralized optimization algorithms (e.g.\ SGD, Adam, etc.) to federated learning. Mime uses a combination of control-variates and server-level statistics (e.g. momentum) at every client-update step to ensure that each local update mimics that of the centralized method. Our thorough theoretical and empirical analyses strongly establish Mime's superiority over other baselines.


Multi-Head Attention: Collaborate Instead of Concatenate

arXiv.org Machine Learning

Attention layers are widely used in natural language processing (NLP) and are beginning to influence computer vision architectures. However, they suffer from over-parameterization. For instance, it was shown that the majority of attention heads could be pruned without impacting accuracy. This work aims to enhance current understanding on how multiple heads interact. Motivated by the observation that trained attention heads share common key/query projections, we propose a collaborative multi-head attention layer that enables heads to learn shared projections. Our scheme improves the computational cost and number of parameters in an attention layer and can be used as a drop-in replacement in any transformer architecture. For instance, by allowing heads to collaborate on a neural machine translation task, we can reduce the key dimension by a factor of eight without any loss in performance. We also show that it is possible to re-parametrize a pre-trained multi-head attention layer into our collaborative attention layer. Even without retraining, collaborative multi-head attention manages to reduce the size of the key and query projections by half without sacrificing accuracy.


Byzantine-Robust Learning on Heterogeneous Datasets via Resampling

arXiv.org Machine Learning

In Byzantine robust distributed optimization, a central server wants to train a machine learning model over data distributed across multiple workers. However, a fraction of these workers may deviate from the prescribed algorithm and send arbitrary messages to the server. While this problem has received significant attention recently, most current defenses assume that the workers have identical data. For realistic cases when the data across workers is heterogeneous (non-iid), we design new attacks which circumvent these defenses leading to significant loss of performance. We then propose a simple resampling scheme that adapts existing robust algorithms to heterogeneous datasets at a negligible computational cost. We theoretically and experimentally validate our approach, showing that combining resampling with existing robust algorithms is effective against challenging attacks.


Dynamic Model Pruning with Feedback

arXiv.org Machine Learning

Deep neural networks often have millions of parameters. This can hinder their deployment to low-end devices, not only due to high memory requirements but also because of increased latency at inference. We propose a novel model compression method that generates a sparse trained model without additional overhead: by allowing (i) dynamic allocation of the sparsity pattern and (ii) incorporating feedback signal to reactivate prematurely pruned weights we obtain a performant sparse model in one single training pass (retraining is not needed, but can further improve the performance). We evaluate our method on CIFAR-10 and ImageNet, and show that the obtained sparse models can reach the state-of-the-art performance of dense models. Moreover, their performance surpasses that of models generated by all previously proposed pruning schemes. Highly overparametrized deep neural networks show impressive results on machine learning tasks. However, with the increase in model size comes also the demand for memory and computer power at inference stage--two resources that are scarcely available on low-end devices. Pruning techniques have been successfully applied to remove a significant fraction of the network weights while preserving test accuracy attained by dense models. In some cases, the generalization of compressed networks has even been found to be better than with full models (Han et al., 2015; 2017; Mocanu et al., 2018). The sparsity of a network is the number of weights that are identically zero, and can be obtained by applying a sparsity mask on the weights.