Jaggi, Martin
Scalable Collaborative Learning via Representation Sharing
Berdoz, Frédéric, Singh, Abhishek, Jaggi, Martin, Raskar, Ramesh
Privacy-preserving machine learning has become a key conundrum for multi-party artificial intelligence. Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device). In FL, each data holder trains a model locally and releases it to a central server for aggregation. In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation). While relevant in several settings, both of these schemes have a high communication cost, rely on server-level computation algorithms and do not allow for tunable levels of collaboration. In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss (contrastive w.r.t. the labels). The goal is to ensure that the participants learn similar features on similar classes without sharing their input data. To do so, each client releases averaged last hidden layer activations of similar labels to a central server that only acts as a relay (i.e., is not involved in the training or aggregation of the models). Then, the clients download these last layer activations (feature representations) of the ensemble of users and distill their knowledge in their personal model using a contrastive objective. For cross-device applications (i.e., small local datasets and limited computational capacity), this approach increases the utility of the models compared to independent learning and other federated knowledge distillation (FD) schemes, is communication efficient and is scalable with the number of clients. We prove theoretically that our framework is well-posed, and we benchmark its performance against standard FD and FL on various datasets using different model architectures.
Agree to Disagree: Diversity through Disagreement for Better Transferability
Pagliardini, Matteo, Jaggi, Martin, Fleuret, François, Karimireddy, Sai Praneeth
Gradient-based learning algorithms have an implicit simplicity bias which in effect can limit the diversity of predictors being sampled by the learning procedure. This behavior can hinder the transferability of trained models by (i) favoring the learning of simpler but spurious features -- present in the training data but absent from the test data -- and (ii) by only leveraging a small subset of predictive features. Such an effect is especially magnified when the test distribution does not exactly match the train distribution -- referred to as the Out of Distribution (OOD) generalization problem. However, given only the training data, it is not always possible to apriori assess if a given feature is spurious or transferable. Instead, we advocate for learning an ensemble of models which capture a diverse set of predictive features. Towards this, we propose a new algorithm D-BAT (Diversity-By-disAgreement Training), which enforces agreement among the models on the training data, but disagreement on the OOD data. We show how D-BAT naturally emerges from the notion of generalized discrepancy, as well as demonstrate in multiple experiments how the proposed method can mitigate shortcut-learning, enhance uncertainty and OOD detection, as well as improve transferability.
Byzantine-Robust Decentralized Learning via Self-Centered Clipping
He, Lie, Karimireddy, Sai Praneeth, Jaggi, Martin
In this paper, we study the challenging task of Byzantine-robust decentralized training on arbitrary communication graphs. Unlike federated learning where workers communicate through a server, workers in the decentralized environment can only talk to their neighbors, making it harder to reach consensus. We identify a novel dissensus attack in which few malicious nodes can take advantage of information bottlenecks in the topology to poison the collaboration. To address these issues, we propose a Self-Centered Clipping (SCClip) algorithm for Byzantine-robust consensus and optimization, which is the first to provably converge to a $O(\delta_{\max}\zeta^2/\gamma^2)$ neighborhood of the stationary point for non-convex objectives under standard assumptions. Finally, we demonstrate the encouraging empirical performance of SCClip under a large number of attacks.
Optimal Model Averaging: Towards Personalized Collaborative Learning
Grimberg, Felix, Hartley, Mary-Anne, Karimireddy, Sai P., Jaggi, Martin
In federated learning, differences in the data or objectives between the participating nodes motivate approaches to train a personalized machine learning model for each node. One such approach is weighted averaging between a locally trained model and the global model. In this theoretical work, we study weighted model averaging for arbitrary scalar mean estimation problems under minimal assumptions on the distributions. In a variant of the bias-variance trade-off, we find that there is always some positive amount of model averaging that reduces the expected squared error compared to the local model, provided only that the local model has a non-zero variance. Further, we quantify the (possibly negative) benefit of weighted model averaging as a function of the weight used and the optimal weight. Taken together, this work formalizes an approach to quantify the value of personalization in collaborative learning and provides a framework for future research to test the findings in multivariate parameter estimation and under a range of assumptions.
RelaySum for Decentralized Deep Learning on Heterogeneous Data
Vogels, Thijs, He, Lie, Koloskova, Anastasia, Lin, Tao, Karimireddy, Sai Praneeth, Stich, Sebastian U., Jaggi, Martin
In decentralized machine learning, workers compute model updates on their local data. Because the workers only communicate with few neighbors without central coordination, these updates propagate progressively over the network. This paradigm enables distributed training on networks without all-to-all connectivity, helping to protect data privacy as well as to reduce the communication cost of distributed training in data centers. A key challenge, primarily in decentralized deep learning, remains the handling of differences between the workers' local data distributions. To tackle this challenge, we introduce the RelaySum mechanism for information propagation in decentralized learning. RelaySum uses spanning trees to distribute information exactly uniformly across all workers with finite delays depending on the distance between nodes. In contrast, the typical gossip averaging mechanism only distributes data uniformly asymptotically while using the same communication volume per step as RelaySum. We prove that RelaySGD, based on this mechanism, is independent of data heterogeneity and scales to many workers, enabling highly accurate decentralized deep learning on heterogeneous data. Our code is available at http://github.com/epfml/relaysgd.
Semantic Perturbations with Normalizing Flows for Improved Generalization
Yuksel, Oguz Kaan, Stich, Sebastian U., Jaggi, Martin, Chavdarova, Tatjana
Data augmentation is a widely adopted technique for avoiding overfitting when training deep neural networks. However, this approach requires domain-specific knowledge and is often limited to a fixed set of hard-coded transformations. Recently, several works proposed to use generative models for generating semantically meaningful perturbations to train a classifier. However, because accurate encoding and decoding are critical, these methods, which use architectures that approximate the latent-variable inference, remained limited to pilot studies on small datasets. Exploiting the exactly reversible encoder-decoder structure of normalizing flows, we perform on-manifold perturbations in the latent space to define fully unsupervised data augmentations. We demonstrate that such perturbations match the performance of advanced data augmentation techniques -- reaching 96.6% test accuracy for CIFAR-10 using ResNet-18 and outperform existing methods, particularly in low data regimes -- yielding 10--25% relative improvement of test accuracy from classical training. We find that our latent adversarial perturbations adaptive to the classifier throughout its training are most effective, yielding the first test accuracy improvement results on real-world datasets -- CIFAR-10/100 -- via latent-space perturbations.
Implicit Gradient Alignment in Distributed and Federated Learning
Dandi, Yatin, Barba, Luis, Jaggi, Martin
A major obstacle to achieving global convergence in distributed and federated learning is the misalignment of gradients across clients, or mini-batches due to heterogeneity and stochasticity of the distributed data. One way to alleviate this problem is to encourage the alignment of gradients across different clients throughout training. Our analysis reveals that this goal can be accomplished by utilizing the right optimization method that replicates the implicit regularization effect of SGD, leading to gradient alignment as well as improvements in test accuracies. Since the existence of this regularization in SGD completely relies on the sequential use of different mini-batches during training, it is inherently absent when training with large mini-batches. To obtain the generalization benefits of this regularization while increasing parallelism, we propose a novel GradAlign algorithm that induces the same implicit regularization while allowing the use of arbitrarily large batches in each update. We experimentally validate the benefit of our algorithm in different distributed and federated learning settings.
Lightweight Cross-Lingual Sentence Representation Learning
Mao, Zhuoyuan, Gupta, Prakhar, Chu, Chenhui, Jaggi, Martin, Kurohashi, Sadao
Large-scale models for learning fixed-dimensional cross-lingual sentence representations like LASER (Artetxe and Schwenk, 2019b) lead to significant improvement in performance on downstream tasks. However, further increases and modifications based on such large-scale models are usually impractical due to memory limitations. In this work, we introduce a lightweight dual-transformer architecture with just 2 layers for generating memory-efficient cross-lingual sentence representations. We explore different training tasks and observe that current cross-lingual training tasks leave a lot to be desired for this shallow architecture. To ameliorate this, we propose a novel cross-lingual language model, which combines the existing single-word masked language model with the newly proposed cross-lingual token-level reconstruction task. We further augment the training task by the introduction of two computationally-lite sentence-level contrastive learning tasks to enhance the alignment of cross-lingual sentence representation space, which compensates for the learning bottleneck of the lightweight transformer for generative tasks. Our comparisons with competing models on cross-lingual sentence retrieval and multilingual document classification confirm the effectiveness of the newly proposed training tasks for a shallow model.
Obtaining Better Static Word Embeddings Using Contextual Embedding Models
Gupta, Prakhar, Jaggi, Martin
The advent of contextual word embeddings -- representations of words which incorporate semantic and syntactic information from their context -- has led to tremendous improvements on a wide variety of NLP tasks. However, recent contextual models have prohibitively high computational cost in many use-cases and are often hard to interpret. In this work, we demonstrate that our proposed distillation method, which is a simple extension of CBOW-based training, allows to significantly improve computational efficiency of NLP applications, while outperforming the quality of existing static embeddings trained from scratch as well as those distilled from previously proposed methods. As a side-effect, our approach also allows a fair comparison of both contextual and static embeddings via standard lexical evaluation tasks.
Critical Parameters for Scalable Distributed Learning with Large Batches and Asynchronous Updates
Stich, Sebastian U., Mohtashami, Amirkeivan, Jaggi, Martin
It has been experimentally observed that the efficiency of distributed training with stochastic gradient (SGD) depends decisively on the batch size and -- in asynchronous implementations -- on the gradient staleness. Especially, it has been observed that the speedup saturates beyond a certain batch size and/or when the delays grow too large. We identify a data-dependent parameter that explains the speedup saturation in both these settings. Our comprehensive theoretical analysis, for strongly convex, convex and non-convex settings, unifies and generalized prior work directions that often focused on only one of these two aspects. In particular, our approach allows us to derive improved speedup results under frequently considered sparsity assumptions. Our insights give rise to theoretically based guidelines on how the learning rates can be adjusted in practice. We show that our results are tight and illustrate key findings in numerical experiments.