Jaggi, Martin
Ghost Noise for Regularizing Deep Neural Networks
Kosson, Atli, Fan, Dongyang, Jaggi, Martin
Batch Normalization (BN) is widely used to stabilize the optimization process and improve the test performance of deep neural networks. The regularization effect of BN depends on the batch size and explicitly using smaller batch sizes with Batch Normalization, a method known as Ghost Batch Normalization (GBN), has been found to improve generalization in many settings. We investigate the effectiveness of GBN by disentangling the induced ``Ghost Noise'' from normalization and quantitatively analyzing the distribution of noise as well as its impact on model performance. Inspired by our analysis, we propose a new regularization technique called Ghost Noise Injection (GNI) that imitates the noise in GBN without incurring the detrimental train-test discrepancy effects of small batch training. We experimentally show that GNI can provide a greater generalization benefit than GBN. Ghost Noise Injection can also be beneficial in otherwise non-noisy settings such as layer-normalized networks, providing additional evidence of the usefulness of Ghost Noise in Batch Normalization as a regularizer.
Provably Personalized and Robust Federated Learning
Werner, Mariel, He, Lie, Jordan, Michael, Jaggi, Martin, Karimireddy, Sai Praneeth
Identifying clients with similar objectives and learning a model-per-cluster is an intuitive and interpretable approach to personalization in federated learning. However, doing so with provable and optimal guarantees has remained an open challenge. We formalize this problem as a stochastic optimization problem, achieving optimal convergence rates for a large class of loss functions. We propose simple iterative algorithms which identify clusters of similar clients and train a personalized model-per-cluster, using local client gradients and flexible constraints on the clusters. The convergence rates of our algorithms asymptotically match those obtained if we knew the true underlying clustering of the clients and are provably robust in the Byzantine setting where some fraction of the clients are malicious.
MEDITRON-70B: Scaling Medical Pretraining for Large Language Models
Chen, Zeming, Cano, Alejandro Hernรกndez, Romanou, Angelika, Bonnet, Antoine, Matoba, Kyle, Salvi, Francesco, Pagliardini, Matteo, Fan, Simin, Kรถpf, Andreas, Mohtashami, Amirkeivan, Sallinen, Alexandre, Sakhaeirad, Alireza, Swamy, Vinitra, Krawczuk, Igor, Bayazit, Deniz, Marmet, Axel, Montariol, Syrielle, Hartley, Mary-Anne, Jaggi, Martin, Bosselut, Antoine
Large language models (LLMs) can potentially democratize access to medical knowledge. While many efforts have been made to harness and improve LLMs' medical knowledge and reasoning capacities, the resulting models are either closed-source (e.g., PaLM, GPT-4) or limited in scale (<= 13B parameters), which restricts their abilities. In this work, we improve access to large-scale medical LLMs by releasing MEDITRON: a suite of open-source LLMs with 7B and 70B parameters adapted to the medical domain. MEDITRON builds on Llama-2 (through our adaptation of Nvidia's Megatron-LM distributed trainer), and extends pretraining on a comprehensively curated medical corpus, including selected PubMed articles, abstracts, and internationally-recognized medical guidelines. Evaluations using four major medical benchmarks show significant performance gains over several state-of-the-art baselines before and after task-specific finetuning. Overall, MEDITRON achieves a 6% absolute performance gain over the best public baseline in its parameter class and 3% over the strongest baseline we finetuned from Llama-2. Compared to closed-source LLMs, MEDITRON-70B outperforms GPT-3.5 and Med-PaLM and is within 5% of GPT-4 and 10% of Med-PaLM-2. We release our code for curating the medical pretraining corpus and the MEDITRON model weights to drive open-source development of more capable medical LLMs.
Landmark Attention: Random-Access Infinite Context Length for Transformers
Mohtashami, Amirkeivan, Jaggi, Martin
While Transformers have shown remarkable success in natural language processing, their attention mechanism's large memory requirements have limited their ability to handle longer contexts. Prior approaches, such as recurrent memory or retrieval-based augmentation, have either compromised the random-access flexibility of attention (i.e., the capability to select any token in the entire context) or relied on separate mechanisms for relevant context retrieval, which may not be compatible with the model's attention. In this paper, we present a novel approach that allows access to the complete context while retaining random-access flexibility, closely resembling running attention on the entire context. Our method uses a landmark token to represent each block of the input and trains the attention to use it for selecting relevant blocks, enabling retrieval of blocks directly through the attention mechanism instead of by relying on a separate mechanism. Our approach seamlessly integrates with specialized data structures and the system's memory hierarchy, enabling processing of arbitrarily long context lengths. We demonstrate that our method can obtain comparable performance with Transformer-XL while significantly reducing the number of retrieved tokens in each step. Finally, we show that fine-tuning LLaMA 7B with our method successfully extends its context length capacity to over 32k tokens, allowing for inference at the context lengths of GPT-4. We release the implementation of landmark attention and the code to reproduce our experiments at https://github.com/epfml/landmark-attention/.
Collaborative Learning via Prediction Consensus
Fan, Dongyang, Mendler-Dรผnner, Celestine, Jaggi, Martin
We consider a collaborative learning setting where the goal of each agent is to improve their own model by leveraging the expertise of collaborators, in addition to their own training data. To facilitate the exchange of expertise among agents, we propose a distillation-based method leveraging shared unlabeled auxiliary data, which is pseudo-labeled by the collective. Central to our method is a trust weighting scheme that serves to adaptively weigh the influence of each collaborator on the pseudo-labels until a consensus on how to label the auxiliary data is reached. We demonstrate empirically that our collaboration scheme is able to significantly boost the performance of individual models in the target domain from which the auxiliary data is sampled. By design, our method adeptly accommodates heterogeneity in model architectures and substantially reduces communication overhead compared to typical collaborative learning methods. At the same time, it can provably mitigate the negative impact of bad models on the collective.
MultiModN- Multimodal, Multi-Task, Interpretable Modular Networks
Swamy, Vinitra, Satayeva, Malika, Frej, Jibril, Bossy, Thierry, Vogels, Thijs, Jaggi, Martin, Kรคser, Tanja, Hartley, Mary-Anne
Predicting multiple real-world tasks in a single model often requires a particularly diverse feature space. Multimodal (MM) models aim to extract the synergistic predictive potential of multiple data types to create a shared feature space with aligned semantic meaning across inputs of drastically varying sizes (i.e. images, text, sound). Most current MM architectures fuse these representations in parallel, which not only limits their interpretability but also creates a dependency on modality availability. We present MultiModN, a multimodal, modular network that fuses latent representations in a sequence of any number, combination, or type of modality while providing granular real-time predictive feedback on any number or combination of predictive tasks. MultiModN's composable pipeline is interpretable-by-design, as well as innately multi-task and robust to the fundamental issue of biased missingness. We perform four experiments on several benchmark MM datasets across 10 real-world tasks (predicting medical diagnoses, academic performance, and weather), and show that MultiModN's sequential MM fusion does not compromise performance compared with a baseline of parallel fusion. By simulating the challenging bias of missing not-at-random (MNAR), this work shows that, contrary to MultiModN, parallel fusion baselines erroneously learn MNAR and suffer catastrophic failure when faced with different patterns of MNAR at inference. To the best of our knowledge, this is the first inherently MNAR-resistant approach to MM modeling. In conclusion, MultiModN provides granular insights, robustness, and flexibility without compromising performance.
Multiplication-Free Transformer Training via Piecewise Affine Operations
Kosson, Atli, Jaggi, Martin
Multiplications are responsible for most of the computational cost involved in neural network training and inference. Recent research has thus looked for ways to reduce the cost associated with them. Inspired by Mogami (2020), we replace multiplication with a cheap piecewise affine approximation that is achieved by adding the bit representation of the floating point numbers together as integers. We show that transformers can be trained with the resulting modified matrix multiplications on both vision and language tasks with little to no performance impact, and without changes to the training hyperparameters. We further replace all non-linearities in the networks making them fully and jointly piecewise affine in both inputs and weights. Finally, we show that we can eliminate all multiplications in the entire training process, including operations in the forward pass, backward pass and optimizer update, demonstrating the first successful training of modern neural network architectures in a fully multiplication-free fashion.
Irreducible Curriculum for Language Model Pretraining
Fan, Simin, Jaggi, Martin
Automatic data selection and curriculum design for training large language models is challenging, with only a few existing methods showing improvements over standard training. Furthermore, current schemes focus on domain-level selection, overlooking the more fine-grained contributions of each individual training point. It is difficult to apply traditional datapoint selection methods on large language models: most online batch selection methods perform two-times forward or backward passes, which introduces considerable extra costs with large-scale models. To mitigate these obstacles, we propose irreducible curriculum as a curriculum learning algorithm for language model pretraining, which prioritizes samples with higher learnability. Specifically, to avoid prohibitive extra computation overhead, we simulate the sample loss along the main model's training trajectory using a small-scale proxy model. Our experiments on the RedPajama-1B dataset demonstrate a consistent improvement on validation perplexity across all 7 domains compared to random uniform baseline and the anti-curriculum strategy. Our method also reduces the sharpness of the network and illustrates a better 5-shot accuracy on MMLU benchmarks.
CoTFormer: More Tokens With Attention Make Up For Less Depth
Mohtashami, Amirkeivan, Pagliardini, Matteo, Jaggi, Martin
The race to continually develop ever larger and deeper foundational models is underway. However, techniques like the Chain-of-Thought (CoT) method continue to play a pivotal role in achieving optimal downstream performance. In this work, we establish an approximate parallel between using chain-of-thought and employing a deeper transformer. Building on this insight, we introduce CoTFormer, a transformer variant that employs an implicit CoT-like mechanism to achieve capacity comparable to a deeper model. Our empirical findings demonstrate the effectiveness of CoTFormers, as they significantly outperform larger standard transformers.
Layer-wise Linear Mode Connectivity
Adilova, Linara, Andriushchenko, Maksym, Kamp, Michael, Fischer, Asja, Jaggi, Martin
Averaging neural network parameters is an intuitive method for fusing the knowledge of two independent models. It is most prominently used in federated learning. If models are averaged at the end of training, this can only lead to a good performing model if the loss surface of interest is very particular, i.e., the loss in the midpoint between the two models needs to be sufficiently low. This is impossible to guarantee for the non-convex losses of state-of-the-art networks. For averaging models trained on vastly different datasets, it was proposed to average only the parameters of particular layers or combinations of layers, resulting in better performing models. To get a better understanding of the effect of layer-wise averaging, we analyse the performance of the models that result from averaging single layers, or groups of layers. Based on our empirical and theoretical investigation, we introduce a novel notion of the layer-wise linear connectivity, and show that deep networks do not have layer-wise barriers between them. In addition, we analyze layer-wise personalization averaging and conjecture that in particular problem setup all partial aggregations result in the approximately same performance. One of the multiple applications for such on Y-axis developed throughout training insights is, for example, knowledge fusion performed in a epochs on X-axis. First row shows the more efficient way than straightforward model ensembles.