Goto

Collaborating Authors

 Jadbabaie, Ali


Convex and Non-convex Optimization Under Generalized Smoothness

arXiv.org Machine Learning

Classical analysis of convex and non-convex optimization methods often requires the Lipshitzness of the gradient, which limits the analysis to functions bounded by quadratics. Recent work relaxed this requirement to a non-uniform smoothness condition with the Hessian norm bounded by an affine function of the gradient norm, and proved convergence in the non-convex setting via gradient clipping, assuming bounded noise. In this paper, we further generalize this non-uniform smoothness condition and develop a simple, yet powerful analysis technique that bounds the gradients along the trajectory, thereby leading to stronger results for both convex and non-convex optimization problems. In particular, we obtain the classical convergence rates for (stochastic) gradient descent and Nesterov's accelerated gradient method in the convex and/or non-convex setting under this general smoothness condition. The new analysis approach does not require gradient clipping and allows heavy-tailed noise with bounded variance in the stochastic setting.


Provable Guarantees for Generative Behavior Cloning: Bridging Low-Level Stability and High-Level Behavior

arXiv.org Machine Learning

Training dynamic agents from datasets of expert examples, known as imitation learning, promises to take advantage of the plentiful demonstrations available in the modern data environment, in an analogous manner to the recent successes of language models conducting unsupervised learning on enormous corpora of text [68, 71]. Imitation learning is especially exciting in robotics, where mass stores of pre-recorded demonstrations on Youtube [1] or cheaply collected simulated trajectories [43, 20] can be converted into learned robotic policies. For imitation learning to be a viable path toward generalist robotic behavior, it needs to be able to both represent and execute the complex behaviors exhibited in the demonstrated data. An approach that has shown tremendous promise is generative behavior cloning: fitting generative models, such as diffusion models [2, 19, 34], to expert demonstrations with pure supervised learning. In this paper, we ask: Under what conditions can generative behavior cloning imitate arbitrarily complex expert behavior? In this paper, we are interested in how algorithmic choices interface with the dynamics of the agent's environment to render imitation possible. The key challenge separating imitation learning from vanilla supervised learning is one of compounding error: when the learner executes the trained behavior in its environment, small mistakes can accumulate into larger ones; this in turn may bring the agent to regions of state space not seen during training, leading to larger-still deviations from intended trajectories.


Demystifying Oversmoothing in Attention-Based Graph Neural Networks

arXiv.org Machine Learning

Oversmoothing in Graph Neural Networks (GNNs) refers to the phenomenon where increasing network depth leads to homogeneous node representations. While previous work has established that Graph Convolutional Networks (GCNs) exponentially lose expressive power, it remains controversial whether the graph attention mechanism can mitigate oversmoothing. In this work, we provide a definitive answer to this question through a rigorous mathematical analysis, by viewing attention-based GNNs as nonlinear time-varying dynamical systems and incorporating tools and techniques from the theory of products of inhomogeneous matrices and the joint spectral radius. We establish that, contrary to popular belief, the graph attention mechanism cannot prevent oversmoothing and loses expressive power exponentially. The proposed framework extends the existing results on oversmoothing for symmetric GCNs to a significantly broader class of GNN models, including random walk GCNs, Graph Attention Networks (GATs) and (graph) transformers.


Linear attention is (maybe) all you need (to understand transformer optimization)

arXiv.org Artificial Intelligence

Transformer training is notoriously difficult, requiring a careful design of optimizers and use of various heuristics. We make progress towards understanding the subtleties of training transformers by carefully studying a simple yet canonical linearized shallow transformer model. Specifically, we train linear transformers to solve regression tasks, inspired by J. von Oswald et al. (ICML 2023), and K. Ahn et al. (NeurIPS 2023). Most importantly, we observe that our proposed linearized models can reproduce several prominent aspects of transformer training dynamics. Consequently, the results obtained in this paper suggest that a simple linearized transformer model could actually be a valuable, realistic abstraction for understanding transformer optimization.


Variance-reduced Clipping for Non-convex Optimization

arXiv.org Artificial Intelligence

Gradient clipping is a standard training technique used in deep learning applications such as large-scale language modeling to mitigate exploding gradients. Recent experimental studies have demonstrated a fairly special behavior in the smoothness of the training objective along its trajectory when trained with gradient clipping. That is, the smoothness grows with the gradient norm. This is in clear contrast to the well-established assumption in folklore non-convex optimization, a.k.a. $L$--smoothness, where the smoothness is assumed to be bounded by a constant $L$ globally. The recently introduced $(L_0,L_1)$--smoothness is a more relaxed notion that captures such behavior in non-convex optimization. In particular, it has been shown that under this relaxed smoothness assumption, SGD with clipping requires $O(\epsilon^{-4})$ stochastic gradient computations to find an $\epsilon$--stationary solution. In this paper, we employ a variance reduction technique, namely SPIDER, and demonstrate that for a carefully designed learning rate, this complexity is improved to $O(\epsilon^{-3})$ which is order-optimal. Our designed learning rate comprises the clipping technique to mitigate the growing smoothness. Moreover, when the objective function is the average of $n$ components, we improve the existing $O(n\epsilon^{-2})$ bound on the stochastic gradient complexity to $O(\sqrt{n} \epsilon^{-2} + n)$, which is order-optimal as well. In addition to being theoretically optimal, SPIDER with our designed parameters demonstrates comparable empirical performance against variance-reduced methods such as SVRG and SARAH in several vision tasks.


Smooth Model Predictive Control with Applications to Statistical Learning

arXiv.org Artificial Intelligence

Approximating complex state-feedback controllers by parametric deep neural network models is a straightforward and easy technique for reducing the computational overhead of complex control policies, particularly in the context of Model Predictive Control (MPC). Learning a feedback controller to imitate an MPC policy over a given state distribution can overcome the limitations of both the implicit (online) and explicit (offline) variants of MPC. Implicit MPC uses an iterative numerical solver to obtain the optimal solution, which can be intractable to do in real-time for high-dimensional systems with complex dynamics. Conversely, explicit MPC finds an offline formulation of the MPC controller via multi-parametric programming which can be quickly queried, but where the complexity of the explicit representation scales poorly in the problem dimensions. Imitation learning (i.e., finding a feedback controller which approximates and performs similarly to the MPC policy) can transcend these limitations by using the computationally expensive iterative numerical solver in an offline manner to learn a cheaply-queriable, approximate policy solely over the state distribution relevant to the control problem, thereby bypassing the need to store the exact policy representation over the entire state domain. For continuous control problems, where approximately optimal control inputs are sufficient to solve the task, imitation learning is a direct path toward computationally inexpensive controllers which solve difficult, high-dimensional control problems in real-time.


How to escape sharp minima

arXiv.org Artificial Intelligence

Modern machine learning applications have seen a remarkable success of optimization algorithms that are designed to find flat minima. Motivated by this paradigm, this work formulates and studies the algorithmic question of how to find flat minima. As an initial effort, this work adopts the trace of hessian of the cost function as the measure of flatness, and formally defines the notion of approximate flat minima. Under this notion, we then design algorithms that find approximate flat minima efficiently. For general cost functions, we present a gradient-based algorithm that finds an approximate flat local minimum efficiently. The main component of the algorithm is to use gradients computed from randomly perturbed iterates to estimate a direction that leads to flatter minima. For the setting where the cost function is an empirical risk over training data, we present a faster algorithm that is inspired by a recently proposed practical algorithm called sharpness-aware minimization, supporting its success in practice.


A Non-Asymptotic Analysis of Oversmoothing in Graph Neural Networks

arXiv.org Artificial Intelligence

Oversmoothing is a central challenge of building more powerful Graph Neural Networks (GNNs). While previous works have only demonstrated that oversmoothing is inevitable when the number of graph convolutions tends to infinity, in this paper, we precisely characterize the mechanism behind the phenomenon via a non-asymptotic analysis. Specifically, we distinguish between two different effects when applying graph convolutions -- an undesirable mixing effect that homogenizes node representations in different classes, and a desirable denoising effect that homogenizes node representations in the same class. By quantifying these two effects on random graphs sampled from the Contextual Stochastic Block Model (CSBM), we show that oversmoothing happens once the mixing effect starts to dominate the denoising effect, and the number of layers required for this transition is $O(\log N/\log (\log N))$ for sufficiently dense graphs with $N$ nodes. We also extend our analysis to study the effects of Personalized PageRank (PPR), or equivalently, the effects of initial residual connections on oversmoothing. Our results suggest that while PPR mitigates oversmoothing at deeper layers, PPR-based architectures still achieve their best performance at a shallow depth and are outperformed by the graph convolution approach on certain graphs. Finally, we support our theoretical results with numerical experiments, which further suggest that the oversmoothing phenomenon observed in practice can be magnified by the difficulty of optimizing deep GNN models.


On Convergence of Gradient Descent Ascent: A Tight Local Analysis

arXiv.org Machine Learning

Gradient Descent Ascent (GDA) methods are the mainstream algorithms for minimax optimization in generative adversarial networks (GANs). Convergence properties of GDA have drawn significant interest in the recent literature. Specifically, for $\min_{\mathbf{x}} \max_{\mathbf{y}} f(\mathbf{x};\mathbf{y})$ where $f$ is strongly-concave in $\mathbf{y}$ and possibly nonconvex in $\mathbf{x}$, (Lin et al., 2020) proved the convergence of GDA with a stepsize ratio $\eta_{\mathbf{y}}/\eta_{\mathbf{x}}=\Theta(\kappa^2)$ where $\eta_{\mathbf{x}}$ and $\eta_{\mathbf{y}}$ are the stepsizes for $\mathbf{x}$ and $\mathbf{y}$ and $\kappa$ is the condition number for $\mathbf{y}$. While this stepsize ratio suggests a slow training of the min player, practical GAN algorithms typically adopt similar stepsizes for both variables, indicating a wide gap between theoretical and empirical results. In this paper, we aim to bridge this gap by analyzing the \emph{local convergence} of general \emph{nonconvex-nonconcave} minimax problems. We demonstrate that a stepsize ratio of $\Theta(\kappa)$ is necessary and sufficient for local convergence of GDA to a Stackelberg Equilibrium, where $\kappa$ is the local condition number for $\mathbf{y}$. We prove a nearly tight convergence rate with a matching lower bound. We further extend the convergence guarantees to stochastic GDA and extra-gradient methods (EG). Finally, we conduct several numerical experiments to support our theoretical findings.


An Optimal Transport Approach to Personalized Federated Learning

arXiv.org Machine Learning

Federated learning is a distributed machine learning paradigm, which aims to train a model using the local data of many distributed clients. A key challenge in federated learning is that the data samples across the clients may not be identically distributed. To address this challenge, personalized federated learning with the goal of tailoring the learned model to the data distribution of every individual client has been proposed. In this paper, we focus on this problem and propose a novel personalized Federated Learning scheme based on Optimal Transport (FedOT) as a learning algorithm that learns the optimal transport maps for transferring data points to a common distribution as well as the prediction model under the applied transport map. To formulate the FedOT problem, we extend the standard optimal transport task between two probability distributions to multi-marginal optimal transport problems with the goal of transporting samples from multiple distributions to a common probability domain. We then leverage the results on multi-marginal optimal transport problems to formulate FedOT as a min-max optimization problem and analyze its generalization and optimization properties. We discuss the results of several numerical experiments to evaluate the performance of FedOT under heterogeneous data distributions in federated learning problems.