Jacovi, Alon
Trends in Explainable AI (XAI) Literature
Jacovi, Alon
The XAI literature is decentralized, both in terminology and in publication venues, but recent years saw the community converge around keywords that make it possible to more reliably discover papers automatically. We use keyword search using the SemanticScholar API and manual curation to collect a well-formatted and reasonably comprehensive set of 5199 XAI papers, available at https://github.com/alonjacovi/XAI-Scholar . We use this collection to clarify and visualize trends about the size and scope of the literature, citation trends, cross-field trends, and collaboration trends. Overall, XAI is becoming increasingly multidisciplinary, with relative growth in papers belonging to increasingly diverse (non-CS) scientific fields, increasing cross-field collaborative authorship, increasing cross-field citation activity. The collection can additionally be used as a paper discovery engine, by retrieving XAI literature which is cited according to specific constraints (for example, papers that are influential outside of their field, or influential to non-XAI research).
Human Interpretation of Saliency-based Explanation Over Text
Schuff, Hendrik, Jacovi, Alon, Adel, Heike, Goldberg, Yoav, Vu, Ngoc Thang
While a lot of research in explainable AI focuses on producing effective explanations, less work is devoted to the question of how people understand and interpret the explanation. In this work, we focus on this question through a study of saliency-based explanations over textual data. Feature-attribution explanations of text models aim to communicate which parts of the input text were more influential than others towards the model decision. Many current explanation methods, such as gradient-based or Shapley value-based methods, provide measures of importance which are well-understood mathematically. But how does a person receiving the explanation (the explainee) comprehend it? And does their understanding match what the explanation attempted to communicate? We empirically investigate the effect of various factors of the input, the feature-attribution explanation, and visualization procedure, on laypeople's interpretation of the explanation. We query crowdworkers for their interpretation on tasks in English and German, and fit a GAMM model to their responses considering the factors of interest. We find that people often mis-interpret the explanations: superficial and unrelated factors, such as word length, influence the explainees' importance assignment despite the explanation communicating importance directly. We then show that some of this distortion can be attenuated: we propose a method to adjust saliencies based on model estimates of over- and under-perception, and explore bar charts as an alternative to heatmap saliency visualization. We find that both approaches can attenuate the distorting effect of specific factors, leading to better-calibrated understanding of the explanation.
Diagnosing AI Explanation Methods with Folk Concepts of Behavior
Jacovi, Alon, Bastings, Jasmijn, Gehrmann, Sebastian, Goldberg, Yoav, Filippova, Katja
When explaining AI behavior to humans, how is the communicated information being comprehended by the human explainee, and does it match what the explanation attempted to communicate? When can we say that an explanation is explaining something? We aim to provide an answer by leveraging theory of mind literature about the folk concepts that humans use to understand behavior. We establish a framework of social attribution by the human explainee, which describes the function of explanations: the concrete information that humans comprehend from them. Specifically, effective explanations should be coherent (communicate information which generalizes to other contrast cases), complete (communicating an explicit contrast case, objective causes, and subjective causes), and interactive (surfacing and resolving contradictions to the generalization property through iterations). We demonstrate that many XAI mechanisms can be mapped to folk concepts of behavior. This allows us to uncover their modes of failure that prevent current methods from explaining effectively, and what is necessary to enable coherent explanations.
Contrastive Explanations for Model Interpretability
Jacovi, Alon, Swayamdipta, Swabha, Ravfogel, Shauli, Elazar, Yanai, Choi, Yejin, Goldberg, Yoav
Contrastive explanations clarify why an event occurred in contrast to another. They are more inherently intuitive to humans to both produce and comprehend. We propose a methodology to produce contrastive explanations for classification models by modifying the representation to disregard non-contrastive information, and modifying model behavior to only be based on contrastive reasoning. Our method is based on projecting model representation to a latent space that captures only the features that are useful (to the model) to differentiate two potential decisions. We demonstrate the value of contrastive explanations by analyzing two different scenarios, using both high-level abstract concept attribution and low-level input token/span attribution, on two widely used text classification tasks. Specifically, we produce explanations for answering: for which label, and against which alternative label, is some aspect of the input useful? And which aspects of the input are useful for and against particular decisions? Overall, our findings shed light on the ability of label-contrastive explanations to provide a more accurate and finer-grained interpretability of a model's decision.
Formalizing Trust in Artificial Intelligence: Prerequisites, Causes and Goals of Human Trust in AI
Jacovi, Alon, Marasović, Ana, Miller, Tim, Goldberg, Yoav
Trust is a central component of the interaction between people and AI, in that 'incorrect' levels of trust may cause misuse, abuse or disuse of the technology. But what, precisely, is the nature of trust in AI? What are the prerequisites and goals of the cognitive mechanism of trust, and how can we cause these prerequisites and goals, or assess whether they are being satisfied in a given interaction? This work aims to answer these questions. We discuss a model of trust inspired by, but not identical to, sociology's interpersonal trust (i.e., trust between people). This model rests on two key properties of the vulnerability of the user and the ability to anticipate the impact of the AI model's decisions. We incorporate a formalization of 'contractual trust', such that trust between a user and an AI is trust that some implicit or explicit contract will hold, and a formalization of 'trustworthiness' (which detaches from the notion of trustworthiness in sociology), and with it concepts of 'warranted' and 'unwarranted' trust. We then present the possible causes of warranted trust as intrinsic reasoning and extrinsic behavior, and discuss how to design trustworthy AI, how to evaluate whether trust has manifested, and whether it is warranted. Finally, we elucidate the connection between trust and XAI using our formalization.
Aligning Faithful Interpretations with their Social Attribution
Jacovi, Alon, Goldberg, Yoav
We find that the requirement of model interpretations to be faithful is vague and incomplete. Indeed, recent work refers to interpretations as unfaithful despite adhering to the available definition. Similarly, we identify several critical failures with the notion of textual highlights as faithful interpretations, although they adhere to the faithfulness definition. With textual highlights as a case-study, and borrowing concepts from social science, we identify that the problem is a misalignment between the causal chain of decisions (causal attribution) and social attribution of human behavior to the interpretation. We re-formulate faithfulness as an accurate attribution of causality to the model, and introduce the concept of "aligned faithfulness": faithful causal chains that are aligned with their expected social behavior. The two steps of causal attribution and social attribution *together* complete the process of explaining behavior, making the alignment of faithful interpretations a requirement. With this formalization, we characterize the observed failures of misaligned faithful highlight interpretations, and propose an alternative causal chain to remedy the issues. Finally, we the implement highlight explanations of proposed causal format using contrastive explanations.
Neural network gradient-based learning of black-box function interfaces
Jacovi, Alon, Hadash, Guy, Kermany, Einat, Carmeli, Boaz, Lavi, Ofer, Kour, George, Berant, Jonathan
Deep neural networks work well at approximating complicated functions when provided with data and trained by gradient descent methods. At the same time, there is a vast amount of existing functions that programmatically solve different tasks in a precise manner eliminating the need for training. In many cases, it is possible to decompose a task to a series of functions, of which for some we may prefer to use a neural network to learn the functionality, while for others the preferred method would be to use existing black-box functions. We propose a method for end-to-end training of a base neural network that integrates calls to existing black-box functions. We do so by approximating the black-box functionality with a differentiable neural network in a way that drives the base network to comply with the black-box function interface during the end-to-end optimization process. At inference time, we replace the differentiable estimator with its external black-box non-differentiable counterpart such that the base network output matches the input arguments of the black-box function. Using this "Estimate and Replace" paradigm, we train a neural network, end to end, to compute the input to black-box functionality while eliminating the need for intermediate labels. We show that by leveraging the existing precise black-box function during inference, the integrated model generalizes better than a fully differentiable model, and learns more efficiently compared to RL-based methods.
Estimate and Replace: A Novel Approach to Integrating Deep Neural Networks with Existing Applications
Hadash, Guy, Kermany, Einat, Carmeli, Boaz, Lavi, Ofer, Kour, George, Jacovi, Alon
Existing applications include a huge amount of knowledge that is out of reach for deep neural networks. This paper presents a novel approach for integrating calls to existing applications into deep learning architectures. Using this approach, we estimate each application's functionality with an estimator, which is implemented as a deep neural network (DNN). The estimator is then embedded into a base network that we direct into complying with the application's interface during an end-to-end optimization process. At inference time, we replace each estimator with its existing application counterpart and let the base network solve the task by interacting with the existing application. Using this 'Estimate and Replace' method, we were able to train a DNN end-to-end with less data and outperformed a matching DNN that did not interact with the external application.